Evaluación del uso de la radiación UV y ozono en la degradación de metilparabeno
DOI:
https://doi.org/10.15359/rca.57-2.7Palabras clave:
Contaminantes emergentes;, fármacos;, tratamiento de aguas;, ozonización;, radiación UV.Resumen
[Introducción]: Los contaminantes emergentes (CEs) son ahora tema de interés para diversas áreas de investigación científica, identificándose en su mayoría estudios internacionales, sin embargo, aún se carece de información suficiente sobre los verdaderos efectos de estos compuestos en el ambiente y en la salud de las poblaciones que estén en contacto con este tipo de contaminantes, requiriéndose a su vez la búsqueda y ejecución de tratamientos efectivos para minimizar su bioacumulación en el entorno, especialmente de aquellas sustancias de origen farmacéutico, las cuales ya están siendo reconocidas por su alto grado de toxicidad. [Objetivo]: En la presente investigación se estudió la degradación del contaminante emergente metilparabeno. [Metodología]: Para dicho estudio se contaminó el agua destilada, posteriormente se llevó a cabo el análisis de la efectividad del ozono, la radiación ultravioleta y el tratamiento combinado de radiación UV y ozonización en la degradación de la sustancia de origen farmacéutico. [Resultados]: En el estudio se encontró que el tratamiento combinado de radiación UV y ozonización fue más efectivo en la degradación del metilparabeno, en comparación con las técnicas de radiación UV y Ozono utilizadas por separado. [Conclusiones]: Los resultados obtenidos en la presente investigación generan información respecto a una nueva alternativa que permita la degradación de contaminantes farmacéuticos, como el metilparabeno, con el fin de minimizar el impacto ambiental de este tipo de sustancias.
Referencias
Arvelo, F., Sojo, F. y Cotte, C. (2016). Contaminación, disruptores endocrinos y cáncer. Investigación Clínica, (1), 77-92.
Barceló, D., Lopez de Alda, J., Petrovic, M., Lacorte, S. y Piña, B. (2016). Los contaminantes emergentes en los sistemas de saneamiento y sus efectos ambientales. Consejo Superior de Investigaciones Científicas, Departamento de Química Ambiental, Barcelona.
Cardenas, Z., Jiménez, D.M., Delgado, D. R., Almanza, O., Jouyban, A., Martínez, F., & Acree Jr. W.E. (2017). Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K, The Journal of Chemical Thermodynamics, (108), 26-37. https://doi.org/10.1016/j.jct.2017.01.005
Cardenas, Z., Jiménez, D.M., & Martínez, F. (2015). Thermodynamic study of the partitioning of methyl and propyl parabens in some organic solvent/buffer systems. The Journal of Chemical Thermodynamics, (88), 180-187. https://doi.org/10.1016/j.jct.2015.03.006
Caviedes, D., Camacho-Feria, D. M. y Delgado, D. (2017a). Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, (9), 43-62. https://doi.org/10.22335/rlct.v9i1.370
Caviedes, D. I., Delgado, D. R. y Olaya, A. (2017b). Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Producción+ Limpia, (11) 126-148. https://doi.org/10.22507/pml.v11n2a11
Caviedes, D. I., Delgado, D. R. y Olaya, A. (2017c). Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos. Revista Jurídica Piélagus, (16) 121-130. https://doi.org/10.25054/16576799.1445
Caviedes, D., y Delgado, D. (2015). Regulación ambiental sobre los productos farmacéuticos residuales en ambientes acuáticos. Entornos, (28), 76-80. https://doi.org/10.25054/01247905.1225
Darbre, P. D., Aljarrah, A., Miller, W. R., Coldham, N. G., Sauer, M. J., & Pope, G. S. (2004). Concentrations of parabens in human breast tumours. Journal of Applied Toxicology, (24) 5-13. https://doi.org/10.1002/jat.958
Delgado, D. R., Caviedes-Rubio, D. I., Ortiz, C. P., Parra-Pava, Y. L., Peña, M. A., Jouyban, A., Mirheydari, S., Martínez, M., & Acree Jr, W.E. (2019). Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation. Physics and Chemistry of Liquids. https://doi.org/10.1080/00319104.2019.1594227
Delgado, D. R., Rodríguez, G., Martínez, J.A., Rojas, J. H., & Martínez, F. (2014). Validación de una metodología analítica empleando espectrofotometría ultravioleta para el estudio de la solubilidad de algunas sulfonamidas en mezclas cosolventes alcohol+ agua. Revista Colombiana de Química, (43) 31-40. https://revistas.unal.edu.co/index.php/rcolquim/article/view/53429/52920
Delgado, H. (2016). Análisis de la exposición de compuestos emergentes en varios escenarios de usos del agua [Tesis de maestría]. Universidad Politécnica de Cataluña, Barcelona, España.
Elorriaga, Y., Marino, D., Carriquiribordi, P., & Ronco, A. (2012). Contaminantes emergentes: Productos farmacéuticos en el medio ambiente. La Plata, Argentina.
Gaviria-Castillo, A.C., Artunduaga-Tole, J. D., Rodríguez-Rubiano, J. D., Zuñiga-Andrade, J. A., Delgado, D. R., Jouyban, A. & Martínez, F. (2019). Solution thermodynamics and preferential solvation of triclocarban in {1, 4-dioxane (1)+ water (2)} mixtures at 298.15 K. Physics and Chemistry of Liquids, (57) 55-66. https://doi.org/10.1080/00319104.2017.1416613
Haman, C., Dauchy, X., Rosin, C., & Munoz, J. F. (2015). Occurrence, fate and behaviour of parabens in aquatic environments: a review. Water Research (68) 1-11. https://doi.org/10.1016/j.watres.2014.09.030
Jiménez, C. (2011). Contaminantes orgánicos emergentes en el ambiente: Productos farmacéuticos. Revista Lasallista de Investigación, 143-153.
Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C.M., Kohler, H.-P. E. & Giger, W. (2010). Ocurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environmental Science and Pollution Research, (17) 834-843. https://doi.org/10.1007/s11356-009-0275-5
Kamaya, Y., Fukaya, Y. & Suzuki, K. (2015). Acute toxicity of benzoic acids to the crustacean Dapnia magna Chemosphere, (59) 255-261. https://doi.org/10.1016/j.chemosphere.2004.11.003
Kusk, K. O., Krüger, T., Long, M., Taxvig, C., Lykkesfeldt, A. E., Frederiksen, H., Andersson, A. M., Andersen, H. R., Hansen, K. M., Nellemann, C., & Bonefeld-Jørgensen, E. C. (2011). Endocrine potency of wastewater: contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. Environmental Toxicology and Chemistry, (30) 413-426. https://doi.org/10.1002/etc.385
Lundov, M., Moesby, L., Zachariae, C., & Johansen, J. (2009). Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy. Contac Dermatitis, (60), 70-78. https://doi.org/10.1111/j.1600-0536.2008.01501.x
Miller, I. & Freund, J. (1989). Probabilidad y estadística para ingenieros, Capitulo 10.
Muñoz, A. (2017). Antibióticos en el suelo [Tesis de pregrado]. Universidad Complutense, Facultad de Farmacia, Madrid, España.
Peña, M. A., Delgado, D. R., & Martinez, F. (2015). Preferential solvation of some n-alkyl p-substituted benzoates in propylene glycol + water cosolvent mixtures. Physics and Chemistry of Liquids, (53), 455-466. https://doi.org/10.1080/00319104.2015.1006221
Ramaswamy, B. R., Kim, J.-W., Isobe, T., Chang, K.-H., Amano, A., Miller, T. W., Siringan, F. P., & Tanabe, S. (2011). Determination of preservative and antimicrobial compounds in fish from Manila Bay, Phillippines using ultra high performance liquid chromatography tandem mass spectrometry, and assessment of human dietary exposure. Journal of Hazardous Materials, (192) 1739-1745. https://doi.org/10.1016/j.jhazmat.2011.07.006
Romero-Nieto, A. M., Cerquera, N. E., Martínez, F. & Delgado, D. R (2019). Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures. Journal of Molecular Liquids, (287), 110894. https://doi.org/10.1016/j.molliq.2019.110894
Ruidiaz, M. A., Delgado, D. R., Mora, C. P., Yurquina, A., & Martínez, F. (2010). Estimation of the indomethacin solubility in ethanol+ water mixtures by the extended Hildebrand solubility approach. Revista Colombiana de Ciencias Químico-Farmacéuticas, (39) 79-95.
Soler, A. (2016). Determinación de la toxicidad aguda de ingredientes utilizados en los productos de cuidado personal [Tesis de maestría]. Universidad Politécnica de Cataluña, Barcelona, España.
Terasaki, M., Abe, R., Makino, M. & Tatarazako, N. (2013). Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia. Environmental Toxicology, (30) 664-673. https://doi.org/10.1002/tox.21944
Wackerly, D., Mendenhall, W., & Sheaffer, R. (2002). Estadística matemática con aplicaciones. Cengage Learning Editores.
Xue, X., Xue, J., Liu, W., Adams, D. H., & Kannan, K. (2017). Trophic magnification of parabens and their metabolites in a subtropical marine food web. Environmental Science & Technology, (51) 780-789. https://doi.org/10.1021/acs.est.6b05501
Xue, J. & Kannan, K. (2016). Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses. Environment International, (94) 546-553. https://doi.org/10.1016/j.envint.2016.06.015
Xue, J., Sasaki, N., Elangovan, M., Diamond, G., & Kannan, K. (2015). Elevated accumulation of parabens and their metabolites in marine mammals from the United States coastal waters. Environmental Science & Technology, (49) 12071-12079. https://doi.org/10.1021/acs.est.5b03601
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
A partir del 17 de mayo del 2018 la licencia ha sido actualizada a:
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.