CARACTERÍSTICAS DE LA CUENCA BAJA DEL RÍO SEGUNDO

RESUMEN

En este artículo se representan las características naturales de la Cuenca Baja del río Segundo, especialmente características hidrográficas, climáticas y usos del suelo.

La cuenca ubicada en la Región Central de Costa Rica, tiene todas las dificultades inherentes a los procesos de usos intensivos del suelo, de urbanización e industrialización. Desde la cuenca alta con procesos de deforestación y uso inadecuado del suelo hasta su cuenca con procesos urbanos e industriales sin control ni planificación que afecta sus características naturales.

Al final del artículo se presentan algunas recomendaciones para aprovechar de manera óptima la cuenca del río Segundo.

UBICACIÓN GEOGRÁFICA

Se encuentra en la Región Central de Costa Rica. Se localiza por coordenadas
en la latitud 9° 56' 01" y 10° 01' 46" N, y su longitud es de 84°, 06' 54" y 84° 13' 24" O. El río Segundo es un afluente de la subcuenca del río Virilla y de la cuenca del río Tárcoles.

La zona de estudio, de esta cuenca baja, se ubica por altitud entre los 600 y los 1200 m. s.n.m. Esta zona cubre las siguientes unidades territoriales administrativas:

- San Rafael de Heredia, cantón No. 5 de la provincia de Heredia, comprende como único distrito dentro de la cuenca Los Ángeles, con un área de 8.25 km², que es equivalente a un 16% del área total del cantón.

- Belén, cantón No. 7 de la provincia de Heredia, con un área dentro de la cuenca de 3.62 km², equivalente a un 32% del área total del cantón.

- Flores, cantón No. 8 de la provincia de Heredia, comprende un área dentro de la cuenca de 4.88 km², o sea, un 70% del área total del cantón.

- Cantón Central de Alajuela, provincia de Alajuela, con un área de 20.18 km², para un 5.2% del total del cantón y un 23.8% del área de la cuenca. Dentro de esta área, están contemplados los distritos de La Guáimara (Santiago oeste), San Rafael de Ojo de Agua y río Segundo (Santiago este).

CATEGORÍAS DE LAS PENDIENTES

Las diferencias altitudinales son muy pronunciadas pues van desde los 2880 m.s.n.m. en las partes superiores (toda la cuenca), hasta los 600 m.s.n.m. en la parte inferior, lo que evidencia diferencias hasta de 2280 metros, en una longitud aproximada de 37 kms.

En la parte superior, las pendientes son fuertes, es decir, superiores a 18%. En la parte inferior, las categorías son de 4 a 8% y hasta de menos de 4%. En la parte media e inferior de la cuenca se presenta una estructura más compleja, por ser la de mayor concentración poblacional, favorecida ésta, por las suaves pendientes y otros factores, verigracia, el clima tan agradable, que beneficia los asentamientos de población. De ahí que se dé una alternancia en el uso del suelo, como se analizará en su capítulo respectivo.

GEOLOGÍA

El área de estudio está constituida geológicamente por materiales de origen volcánico, tales como lavas, tobas y piroclastos de la época de Holoceno, período Cuaternario (mapa No. 1). Específicamente el sector presenta los resultados de la formación Barva, que consistió en varias coladas de lava, densas, bien cristalizadas masivas y fracturadas. <<se localizan cuatro unidades de lava, aluvión menor y toba por
depositación sólida, materiales todos provenientes de los volcanes Barva, Poás e Irazú. La primera unidad aflora desde la cima del volcán Barva hasta San Antonio de Belén y otra colada de lava aflora desde Huacalillo y Angeles hasta Ojo de Agua». (E. Protti, 1978).

GEOMORFOLOGIA

«Forma parte de la unidad geomórfica de origen volcánico, representada por relleno volcánico del Valle Central, la cual corresponde a un relieve plano-ondulado con pendientes de 0 a 10 grados. La unidad está formada en superficie por rocas volcánicas, principalmente lavas, tobas e ignimbritas, cubiertas por cenizas en un espesor variable. Las secuencias de lavas descansa sobre rocas sedimentarias. Las lavas son de tipo andesítico. Geomorfológicamente, esta unidad no es un Valle, sino una fosa tectónica, debido a la presencia de una falla a todo lo largo del pie de la Sierra Volcánica Central, la cual está evidenciada por la existencia de fuentes termominerales, así como también, la interrupción brusca y alineada con la supuesta falla de las
I. Depresión o fosa tectónica central.
II. Sierra volcánica central.
III. Estribaciones de la cordillera de Talamanca.

MAPA Nº 2
MAPA FISIOGRAFICO

Las diferencias altimétricas que presenta el territorio ancestrales, que van desde los 2280 m.s.n.m. en la parte inferior, hasta los 600 m.s.n.m. en la parte superior, todo el cuenca, hasta los 2280 metros, en una longitud aproximada de 37 km. Dentro de esta cuenca se presenta una estructura más compleja, por lo que en mayor profundidad la escasa aluviones, la escasa cantidad de material de origen volcánico, se ve incrementada, y en menor extensión de la misma. Dentro de esta cuenca se presenta una estructura más compleja, por lo que en mayor profundidad la escasa aluviones, la escasa cantidad de material de origen volcánico, se ve incrementada, y en menor extensión de la misma.

En concordancia con lo anterior, encontramos que el espacio geográfico en estudio, está formado por tres componentes o fisiografías distintas, a saber:

a. Depresión o fosa tectónica central.
b. Sierra volcánica central.
c. Estribaciones de la cordillera de Talamanca.

Se evidencia entonces, que nuestra área específica de estudio, se denomina como depresión tectónica con sus características ya citadas, (mapa Nº 2).
HIDROGRAFÍA

Localización: la cuenca baja del río Segundo se encuentra en la región central de Costa Rica. Sus aguas se orientan con rumbo NE-SO. Su ubicación geográfica está en la latitud 9° 8' 01" y 10° 01' 46" N y su longitud es de 84° 06' 54" y 84° 13' 24". Ubicación tomada con base en las hojas topográficas del I. G. N. escala 1:50.000, de Barva y Abra.

Con base en la clasificación que tiene establecida el INSTITUTO COSTARRICENSE DE ELECTRICIDAD (ICE), el río Segundo es un afluente de la subcuenca del río Virilla y de la cuenca del río Grande de Tárcoles. El río Segundo nace en las cercanías del volcán Barva a una altitud aproximada de 2880 m.s.n.m. y desemboca en el río Virilla a unos 600 m.s.n.m. recorriendo una gradiente de 2280 metros en una distancia aproximada de 37 kms. El río Segundo con su patrón de drenaje dentrítico, cuenta entre sus tributarios con los ríos, Macarrón, Zanjón y Porrosatí así como la quebrada La Cruz.

El río Segundo, tanto en su curso superior como en el medio y bajo, contribuye como recurso natural que es, en el abastecimiento de sus aguas a diversos centros de población, industrias, riego, agricultura y participa como contribuyente en la existencia de algunas fuentes de energía eléctrica. Por ejemplo (río Segundo, nuestro amo).

En su parte baja, el río Segundo es de gran importancia, no sólo por lo apuntado en el párrafo anterior, sino porque además debe prestársele atención y vigilancia sobre todo en la época lluviosa, para evitar problemas como son las inundaciones y los represamientos que causan daños humanos y materiales por los lugares donde discurren sus aguas, (mapa N° 4).

Un aspecto que es importante puntualizar, con el fin de que se tomen las medidas pertinentes, es el aumento de población que se ha venido presentando en los últimos años, a lo largo de sus márgenes.

Este aumento de población provoca una mayor demanda de sus aguas y por lógica una disminución de sus fluidos. Sumado a lo anterior, encontramos que debido -entre otras cosas- a la falta de vigilancia en su curso y a la ausencia de políticas estatales o municipales, así como clara ausencia de educación ambiental en sus pobladores, cada día sufre mayor contaminación.

Aspectos como el de usar el río de basurero, o bien, recolector de desechos, deforestación masiva en sus márgenes, alteración de la calidad del agua, destrucción de la cobertura vegetal, ya sea por ignorancia o por indiferencia, no cumplimiento de exigencias sanitarias, etc. son algunos de los problemas que agravan esta situación, de hecho irregular y preocupante. Esta problemática no sólo se presenta en la época lluviosa cuando se presentan mayores caudales, sino también en la época de estiaje, cuando en realidad los flujos son mínimos.
MAPA Nº 3
HIDROGRAFÍA

Alterar la calidad del agua, contaminarla, provocar desequilibrio en las aguas superficiales y subterráneas son situaciones que llaman urgentemente a la meditación y a la acción.

Basta tener presente el incremento en la concentración urbana, como en la industria, en las márgenes del río Segundo, para saber que esto implica un mayor uso en las tierras y el agua. Agua y tierra unidos, conlleva a un mal uso de algunos de ellos, pues bien se sabe que uno afecta al otro.

El progreso industrial, aparejado al progreso urbano, está llevando inmersericordemente a una contaminación acelerada de las aguas de las cuencas, subcuencas, ríos y riachuelos. Aguas servidas domésticas, y aguas servidas industrialmente, descargan en las cuencas y ponen en serios peligros su uso. Esta contaminación de acuferos, es preocupante desde cualquier punto que se le mire.

Finalmente, la naturaleza y el paisaje se va transformando, de tal forma que se
MAPA N° 4
PRINCIPALES POBLADOS UBICADOS EN LA CUENCA BAJA DEL RÍO SEGUNDO

Dentro de la cuenca baja del río Segundo, observando series climáticas largas, encontramos que el mes de septiembre resulta ser el más lluvioso del año, con 300 mm. Sustituye el bosque por los cultivos, los cultivos por los potreros, los potreros por las urbanizaciones y las industrias y así sucesivamente se va concatenando un desequilibrio ecológico, que llegará a dar muerte en forma criminal, a lo que antes fue una zona de un gran potencial turístico, un paisaje poco alterado y una naturaleza frondosa y rica.

El problema social, económico y político así como sus implicaciones ecológicas naturales, que nos presenta la cuenca baja del río Segundo, son realmente alarmantes y esto no se detendrá, de no aplicarse cuanto antes, medidas fuertes y planificadas; ya sea por la acción municipal o estatal.

CLIMA

Con el fin de establecer algunos parámetros climáticos del área de estudio, se deben aclarar algunos aspectos preliminarmente, que nos faciliten el entendimiento y sobre qué bases se sustenta dicho estudio.
MAPA Nº 5
PRECIPITACIÓN PROMEDIO
Del mes más lluvioso (mm) setiembre

Primeramente, se señala que los datos y valores fueron tomados de las siguientes estaciones meteorológicas: Aeropuerto Juan Santamaría, San Joaquín de Flores, Belén Scott Paper, Hacienda Ojo de Agua, La Reforma. Estas estaciones -como se puede inferir-, son representativas del área de estudio y en cada una de ellas se ha tratado de obtener el mayor número de valores a través del tiempo, para darle mayor precisión y validez a los resultados logrados.

En segundo lugar, es importante señalar que el área de estudio, ubicada en la subregión de Heredia y un sector de la provincia de Alajuela, está sometida simultáneamente a la influencia de flujos provenientes tanto del Caribe como del Pacífico, esto en relación con centros de alta o baja presión, así como con el comportamiento o mecánica de las masas de aire locales.

Un tercer elemento a tomar en cuenta, que se relaciona con las características propias de la morfología del área de estudio son las lluvias orográficas y de derrame, asociadas con disturbios de la Vertiente Atlántica (Caribe).
Ante esta situación descrita y consciente de esa mecánica atmosférica del área de estudio, así como de la influencia a que es sometida por agentes climáticos externos, provenientes de los cuatro puntos cardinales, se consideró muy importante aplicar la cartografía o mapeo a una escala aconsejable, es decir, a 1:200.000, esto evidentemente nos permitiría mucho mayor claridad en la graficación de esos fenómenos. En el sentido anterior, la demarcación general o contorno de los mapas obedecen a la cuenca del río Virilla (E. Protti, 1987), y la demarcación específica por coordenadas, lógicamente a nuestro sector de estudio.

Aclarados los puntos anteriores, es importante caracterizar a qué influencias está sometida la zona de estudio, siempre desde el punto de vista climático.

La época lluviosa se extiende desde principios de mayo hasta mediados de noviembre. Está caracterizada por un tipo de lluvia convectiva. Se denomina lluvia convectiva, aquélla proveniente de nubes de gran desarrollo vertical, resultado de fuertes corrientes ascendentes que se inestabilizan por un pronunciado calentamiento del aire cerca del suelo, por lo que se desprende que, tal tipo de lluvias suelen ocurrir en horas del día; por lo general, al mediodía o en las primeras horas de la tarde. Por ejemplo, para la estación San José (Alfaro 1981), se pone de manifiesto que la concentración mayor de las lluvias de la parte occidental del Valle Central, se da entre las doce mediodía y las seis de la tarde. Este tipo de lluvia convectiva, se caracteriza por ser fuerte, de gota grande y de corta duración; acompañada en no pocas veces de tormenta eléctrica. Además por lo general es muy localizada, por lo que difícilmente llovería en toda la cuenca en un mismo momento.

Distribución de las lluvias: mes más lluvioso

Dentro de la cuenca baja del río Segundo, observando series climáticas largas, encontramos que el mes de setiembre resulta ser el más lluvioso del año, con 300 mm. (IMN, 1975) (mapa No. 5).

De la situación anterior, se pueden distinguir dos aspectos:

a. un máximo de lluvias con 350 mm., localizados en un sector al norte de la ciudad de Alajuela.

b. un segundo máximo de lluvias, también de 350 mm., que se ubica al sur de la zona de estudio.

Distribución de las lluvias: mes más seco

Como se puede apreciar en el mapa N° 6, que es representativo de la época seca, sólo las máximas cantidades de lluvias, que oscilan entre los 50 y los 75 mm., acontecen o se presentan en las faldas superiores de la Sierra Volcánica Central. Son
MAPA Nº 6
PRECIPITACION PROMEDIO
MES MAS SECO (FEBRERO)

lluvias que se derraman del Atlántico (Caribe) hacia el Pacífico y por esa razón se quedan en esas zonas altas. Estas lluvias son débiles o moderadas, de carácter continuo y se les conoce mejor como lluvias orográficas, a veces penetran hasta las partes bajas del Valle Central.

De acuerdo con los valores estudiados, se observa que el mes más seco es el de febrero, con una cantidad promedio de 10 mm. en el sector de estudio. (cuenca baja).

Distribución anual de las lluvias

En términos anuales, el único rasgo que se mantiene es la alta pluvisividad de la parte intermedia y alta de los complejos volcánicos Poás y Barva (3000/3500 m.), encontramos que las diferencias son muy significativas, es decir, gradientes de precipitación considerables en distancias relativamente cortas, (mapa Nº 7).
Por otra parte es importante tener presente que el elemento viento es un aspecto de gran trascendencia en cuanto a la distribución espacial de las lluvias. En épocas de lluvias, el viento cálido y húmedo predominante en la Cuenca, es el que viene del Pacífico, conocido también como vientos oestes. Este viento proveniente del Pacífico va a provocar lluvias en esta área, pues trae consigo un manto nuboso bastante denso.

La masa de aire de los oestes, en su penetración hacia el Valle Central, sufre en efecto de levantamiento mecánico debido a la orografía siendo este efecto mecánico sobre los oestes, se suma una brisa diurna valle-montaña (Lansberg, 1976), que acelera y acrecienta la producción de lluvia. Las acelera porque, por lo general es donde más temprano precipita y las acrecienta porque es donde más llueve.

Características de las temperaturas

En los trópicos, y sobre todo en la latitud media de Costa Rica, sea los 10° N.,
la variación estacional de la temperatura es prácticamente insignificante, para la mayoría de las actividades humanas, por eso cotidianamente se le conoce como climas isotermales. Lo que sí es significativo, son las variaciones diarias de temperatura, es decir, la onda de variación diurna con un pico de máxima y mínima temperatura.

De acuerdo con lo anterior, se esboza a continuación las características de las temperaturas en sus manifestaciones máximas, mínimas y medias anuales.

Temperaturas máximas promedio anual en °C

Las máximas temperaturas diarias y a lo largo del año, se producen por lo general entre el mediodía y las catorce horas. Estas temperaturas están afectadas por la influencia de dos variables importantes como lo son; el efecto de la altitud y la cobertura nubosa. Estas temperaturas máximas promedio anual, son de 27.5°C (mapa N° 8).
MAPA N° 9
TEMPERATURA MINIMA
PROMEDIO ANUAL (°C)

Temperaturas mínimas promedio anual en °C

Las temperaturas mínimas se dan en horas de la madrugada, preferentemente entre las 2 y las 6 a.m. A estas horas la presencia de nubosidad es escasa, excepto en presencia de temporales u otro tipo de disturbios atmosféricos. Eso significa que las temperaturas mínimas no están influenciadas por efectos de invernadero, que retengan el escape de la radiación terrestre de onda larga, durante estas horas.

Más bien, las temperaturas mínimas van a estar más influenciadas por las masas de aire en sí y por las características orográficas. En el área de estudio, las temperaturas mínimas promedio son de 17.5 °C. (mapa 9).

Por otra parte, y de acuerdo con los datos analizados en las series de I.M.N., encontramos que las temperaturas promedio anual está entre 20 °C/22.5 °C. (mapa N° 10).
Zonas de vida

En la parte baja de la cuenca del río Segundo se presenta el bosque húmedo tropical premontano (según clasificación de Holdridge 1967). Presenta precipitaciones que oscilan entre los 1700 y los 2000 mm. anuales, en elevaciones que van desde los 700 a los 1300 m.s.n.m. (aproximadamente), en estos sectores, sobre todo en la parte baja, han ido desapareciendo los bosques naturales y han sido reemplazados por cultivos como el café, hortalizas, árboles frutales, granos básicos y pastos. Aún más, recientemente estos cultivos han venido siendo sustituidos por el proceso de urbanización de ciudadelas y residenciales y por último focos industriales.

Tipo y uso del suelo

La parte inferior de la cuenca del río Segundo, (700-1000 m.s.n.m.) se caracteriza por presentar una combinación de tres tipos de suelo: latosoles, combinación de latosol con latosol y finalmente el grumosol.
El uso del suelo característico de la parte inferior de la cuenca, es el del café, caña de azúcar, algunos cultivos hortícolas, tubérculos, pequeñas áreas de pastos y por supuesto las grandes concentraciones urbanas. Paralelo a estas concentraciones, está la presencia de industrias de textiles, alimentarias, aserraderos, granjas, beneficios, etc.

Más hacia el extremo suroeste de la cuenca, el tipo de suelo es litosol y sobre todo el grumosol. Aquí los cultivos son básicamente anuales y de carácter permanente. Se produce por ejemplo: hortalizas, tomate, chile dulce, cebollas. En granos: maíz y frijoles. Y finalmente existen árboles frutales (cítricos).

CONCLUSIONES

ASPECTOS GENERALES

Tanto las cuencas hidrográficas, como las subcuencas, ríos y riachuelos, históricamente han jugado un papel sumamente importante en el desarrollo socioeconómico de los países. Asimismo y desde el punto de vista geográfico, juegan un rol de suma importancia en el desarrollo regional y en el equilibrio ecológico de su localidad. La conjugación de los elementos como el suelo, las plantas y animales por un lado, así como la presencia imprescindible del hombre, forman parte de ese conjunto o sistema denominado naturaleza, que por supuesto incluye las reservas de agua y algunos otros elementos en los cuales uno depende de los otros.

En el caso particular de nuestra área de estudio, encontramos que desde que se acelera el proceso de urbanización e industrialización el uso de la tierra y el agua en la cuenca baja, se ha venido convirtiendo en un problema cada vez más serio. Aguas contaminadas por plaguicidas, desechos, aceleración de procesos erosivos y todo tipo de alternación a este equilibrio, van deteriorando en forma rápida las condiciones otrora, en estado natural aceptable y puro.

La deforestación masiva que se ha venido también incrementando, viene originando problemas no sólo en la cobertura vegetal, sino que provoca cárcavas en las márgenes de los ríos y por supuesto origina taludes y procesos erosivos acelerados.

Ante la situación descrita, nos encontramos con un estado de cosas tan deplorables que, imponen perentoriamente una actitud de rescate, de reconstrucción y búsqueda de equilibrio para un espacio geográfico que ofrecía sus grandes atractivos naturales; clima, suelos, vegetación y cantidad y calidad de agua pura; ahora convertido en un espacio alterado, deteriorado y con expectativas nada halagüeñas.

RECOMENDACIONES

Tal como se citó en líneas anteriores, creemos firmemente en la necesidad de
una acción inmediata por parte de las municipalidades y el Estado para aplicar las leyes existentes sobre conservación de las aguas y el medio, y adecuar aquéllas que se estimen convenientes. No debe perderse la perspectiva, sin embargo, de caer en un conservativismo por el conservativismo mismo, sino el de lograr un equilibrio y una planificación entre el desarrollo y la conservación.

Esta recomendación, debe ponerse en práctica, sin perder de vista algunos criterios que cada vez cobran mayor importancia y vigencia, por ejemplo:

— Los recursos naturales forman parte del patrimonio nacional y no deben ser usufructuados por personas o grupos en detrimento de otros grupos sociales.

— Se pueden obtener ganancias a través de las inversiones que se llevan a cabo, siempre y cuando la relación de costo-beneficio a nivel de riesgo natural y ecológico no se vea amenazado ni agravado.

— Los recursos naturales pueden ser explotados, en el tanto que los beneficios logrados, contribuyan al mejoramiento social sin perjuicio ecológico al corto, mediano o largo plazo.

— Deben elaborarse planes catalizadores sobre el impacto ambiental si de verdad se quieren manipular los recursos naturales sin violentar el estado natural.

— Deben establecerse controles permanentes sobre la contaminación de las aguas, con el fin de mantener su calidad y cantidad.

— Debe darse una estricta vigilancia, sobre las nacientes, cuencas, ríos, acuíferos, con el fin de evitar a toda costa la contaminación de las mismas.

— Crear los mecanismos legales pertinentes, para la conservación de las áreas con potencial turístico y todas sus fuentes hídricas.
BIBLIOGRAFÍA

Boto, Mario. PROYECTO DE EXTENSION DE DESARROLLO AGROPECUARIO DEL CANTON DE SANTA BARBARA. Heredia. 45 pp.

Campos O., Max. INTRODUCCION AL CLIMA DE COSTA RICA. 16 pp.

Instituto Geográfico Nacional (IGN). HOJA TOPOGRAFICA 1:50.000 (BARVA, ABRA, RIO GRANDE).

Instituto Meteorológico Nacional (I.M.N.). MAPA DE PRECIPITACION PROMEDIO ANUAL EN COSTA RICA.

Montero D., Orlando. DIAGNOSTICO DE LOS RECURSOS TURISTICOS-GEOGRAFICOS DE LOS CANTONES DE BARVA Y SAN RAFAEL DE HEREDIA Y LA PORCION SUROCENTRAL DEL PARQUE NACIONAL BRAULIO CARRILLO. pp. 28-54. (27 págs.).

Protti M., Eduardo et al. EL SISTEMA FLUVIAL DE TARCOLES, COSTA RICA (1983). pp. 53, 54, 58, 59, 64 y 71. (6 págs.).

Protti M., Eduardo et al. Idem. LECTURA JUEGO DE MAPAS.
