Auditory Perception Processes and Motor Learning. Bibliographic Review

Keywords: auditory perception, learning, postural balance

Abstract

Introduction: At the neurophysiological level, the cerebellum, the basal ganglia, and the limbic system are important in the coordination and memory of movement. Objective: Understanding the processes involved in the sensoperceptive relationship of hearing and motor learning is a permanent motivation of different disciplines. Method: A documentary review is presented; it aims to analyze the relationship between auditory perception and motor learning using content analysis from the perspectives of audiology, medicine, and neurorehabilitation. The keywords and combinations taken into account were the following: hearing perception, learning, balance, coordination, and combinations hearing-learning, hearing-balance, and hearing-coordination. The databases and metasearchers Pubmed, Medscape, Trip, ScienceDirect, EBSCOhost, Pedro, Scielo, and Lilacs were used. Virtual libraries such as SINAB, Cochrane, University of Malaga, UsNational Library of Medicine, and National Institutes of Health were also consulted. We selected 22 articles that met the inclusion criteria. Results: A relationship was found between auditory perception and motor learning in the communication of auditory and motor sensory information at the level of processing in the cerebellum and basal ganglia, being a fundamental part of the retention and motor transfer. Conclusion: In the motor learning process involving the experience of movement, we propose the participation of hearing by integrating the perceived signals –visual, auditory, motor, and vestibular– that are concretized to improve learning, making it more effective, generating a more lasting memory.

References

Agostini, T., Righi, G., Galmonte, A. & Bruno, P. (2004). The relevance of auditory information in optimizing hammer throwers performance. Biomechanics and Sports, 473, 67-74. https://doi.org/10.1007/978-3-7091-2760-5_9

Atencio, C. A., Sharpee, T. O. & Schreiner, C. E. (2012). Receptive field dimensionality increases from the auditory midbrain to cortex. Journal of Neurophysiology, 107(10), 2594-2603. https://doi.org/10.1152/jn.01025.2011

Batalla Flores, A. (2005). Retroalimentación y aprendizaje motor: influencia de las acciones realizadas de forma previa a la recepción del conocimiento de los resultados en el aprendizaje y la retención de habilidades motrices. Dipòsit Digital de la Universitat de Barcelona. http://hdl.handle.net/2445/43053

Brainard, M. S. & Doupe, A. J. (2002). What songbirds teach us about learning. Nature, 417(6886), 351-358. https://doi.org/10.1038/417351a

Brown, R. E. (2020). Donald O. Hebb and the Organization of Behavior: 17 years in the writing. Molecular Brain, 13(1), 55. https://doi.org/10.1186/s13041-020-00567-8

Brown, R. M. & Palmer, C. (2012). Auditory-motor learning influences auditory memory for music. Memory & Cognition, 40(4), 567-578. https://doi.org/10.3758/s13421-011-0177-x

Buchanan, J. J. & Wang, C. (2012). Overcoming the guidance effect in motor skill learning: feedback all the time can be beneficial. Experimental Brain Research, 219(2), 305-320. https://doi.org/10.1007/s00221-012-3092-x

Campos, J., Ramkhalawansingh, R. & Pichora-Fuller, M. K. (2018). Hearing, self-motion perception, mobility, and aging. Hearing Research, 369, 42-55. https://doi.org/10.1016/j.heares.2018.03.025

Chacón-Cuberos, R., Zurita-Ortega, F., Ramírez-Granizo, I. & Castro-Sánchez, M. (2020). Physical Activity and Academic Performance in Children and Preadolescents: A Systematic Review. Apunts. Educación Física y Deportes, (139), 1-9. https://doi.org/10.5672/apunts.2014-0983.es.(2020/1).139.01

Dick, A. & Tremblay, P. (2012). Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529-3550. https://doi.org/10.1093/brain/aws222

Effenberg, A. O. (2005). Movement sonification: effects on perception and action. IEEE Multimedia, 12(2), 53-59. https://doi.org/10.1109/mmul.2005.31

Fernández-Miranda, J. C., Wang, Y., Pathak, S., Stefaneau, L., Verstynen, T. & Yeh, F. C. (2015). Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Structure & Function, 220(3), 1665-1680. https://doi.org/10.1007/s00429-014-0751-7

Gandemer, L., Parseihian, G., Kronland-Martinet, R. & Bourdin, C. (2017). Spatial cues provided by sound improve postural stabilization: evidence of a spatial auditory map? Frontiers in Neuroscience, 11, 1-11. https://doi.org/10.3389/fnins.2017.00357

Gazzola, V., Aziz-Zadeh, L. & Keysers, C. (2006). Empathy and the somatotopic auditory mirror system in humans. Current Biology, 16(18), 1824-1829. https://doi.org/10.1016/j.cub.2006.07.072

Haueisen, J. & Knösche, T. R. (2001). Involuntary Motor Activity in Pianists Evoked by Music Perception. Journal of Cognitive Neuroscience, 13(6), 786-792. https://doi.org/10.1162/08989290152541449

Kramer, S. & Brown, D. K. (2021). Audiología: Ciencia a la práctica (4.a ed.). Plural Publishing, Inc.

Kennel, C., Streese, L., Pizzera, A., Justen, C., Hohmann, T. & Raab, M. (2015). Auditory reafferences: the influence of the real-time feedback on movement control. Frontiers in Psychology, 6, 1-6. https://doi.org/10.3389/fpsyg.2015.00069

Lahav, A., Saltzman, E. & Schlaug, G. (2007). Action representation of sound: audio motor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308-314. https://doi.org/10.1523/JNEUROSCI.4822-06.2007

Lin, F. R. & Ferrucci, L. (2012). Hearing loss and falls among older adults in the United States. Archives of Internal Medicine, 172(4), 369-371. https://doi.org/10.1001/archinternmed.2011.728

Meck, W. H., Penney, T. B. & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145-152. https://doi.org/10.1016/j.conb.2008.08.002

Mena de la Cruz, A. C. (2018). Aproximación teórica de la intervención de fisioterapia en neurorrehabilitación desde el aprendizaje motor en pacientes con evento cerebrovascular. Movimiento Científico, 11(2), 73-80. https://doi.org/10.33881/2011-7191.mct.11204

Myers, J. C., Mock, J. R. & Golob, E. J. (2020). Sensorimotor integration can enhance auditory perception. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-58447-z

Pérez, C., Montoya, O. L. & Henao, L. M. (2020). Aprendizaje motor y realidad virtual. En M. A. Cubillo León (Comp.), Avances científicos y nuevas tecnologías en neurorrehabilitación transdisciplinaria (pp. 119-141). CMUCH. https://bit.ly/35LTYMW

Rizzolatti, G., Fadiga, L., Gallese, V. y Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131-141. https://doi.org/10.1016/0926-6410(95)00038-0

Ronsse, R., Puttemans, V., Coxon, J. P., Goble, D. J., Wagemans, J., Wenderoth, N. & Swinnen, S. P. (2010). Motor learning with augmented feedback: modality-dependent behavioral and neural consequences. Cerebral Cortex, 21(6), 1283-1294. https://doi.org/10.1093/cercor/bhq209

Sánchez, E. (2014). Fisiología auditiva. En J. Pérez & E. Gil (Eds.), Libro virtual de formación en ORL (1.a ed., Vol. 1, pp. 1-19). Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. https://booksmedicos.org/libro-virtual-de-formacion-en-otorrinolaringologia-seorl/

Schachner, A. (2010). Auditory-motor entrainment in vocal mimicking species. Communicative & Integrative Biology, 3(3), 290-293. https://doi.org/10.4161/cib.3.3.11708

Schmitz, G., Mohammadi, B., Hammer, A., Heldmann, M., Samii, A., Münte, T. F. & Effenberg, A. O. (2013). Observation of sonified movements engages a basal ganglia frontocortical network. BMC Neuroscience, 14(32). https://doi.org/10.1186/1471-2202-14-32

Sigrist, R., Rauter, G., Riener, R. & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20, 21-53. https://doi.org/10.3758/s13423-012-0333-8

Skjaerven, L. H., Mattsson, M., Catalán-Matamoros, D., Parker, A., Gard, G. & Gyllensten, A. L. (2018). Consensus on core phenomena and statements describing Basic Body Awareness Therapy within the movement awareness domain in physiotherapy. Physiotherapy Theory and Practice, 35(1), 80-93. https://doi.org/10.1080/09593985.2018.1434578

Suárez, H. & Ferreira, E. (2019). Rol de la información auditiva en el control motor del sistema del equilibrio en pacientes con implantes cocleares. Anales de la Facultad de Medicina, 6(2), 8-24. https//doi.org/10.25184/anfamed2019v6n2a10

Teki, S., Grube, M. & Griffiths, T. (2012). A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Frontiers in Integrative Neuroscience, 5, 1-7. https://doi.org/10.3389/fnint.2011.00090

Vidranski, T. & Farkaš, D. (2015). Motor skills in hearing impaired children with or without cochlear implant -A systematic review. Collegium Antropologicum, 39(1), 173-179. https://bit.ly/3kuQrXI

Viljanen, A., Kaprio, J., Pyykko, I., Sorri, M., Pajala, S., Kauppinen, M., Koskenvuo, M. & Rantanen, T. (2009). Hearing as a Predictor of Falls and Postural Balance in Older Female Twins. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(2), 312-317. https://doi.org/10.1093/gerona/gln015

Published
2021-12-09
How to Cite
Montoya Hurtado, O., Serna, G., & Martínez Moreno, O. (2021). Auditory Perception Processes and Motor Learning. Bibliographic Review. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 19(1), 1-10. https://doi.org/10.15359/mhs.19-1.7

Comentarios (ver términos de uso)