Accuracy and Reliability of Inertial Devices for Load Assessment During Flywheel Workout

Authors

DOI:

https://doi.org/10.15359/mhs.19-1.1

Keywords:

technology, weightlifting, exercise, physical fitness, sports

Abstract

There is currently an increase in inertial flywheel application in strength training; thus, it must be monitored by an accurate and reliable device. The present study tested: (1) the accuracy of an inertial measurement device (IMU) to correctly measure angular velocity and (2) its inter-unit reliability for the measurement of external load. The analysis was performed using Pearson Correlation and Intraclass Correlation Coefficient (ICC). The IMU accuracy was tested using Bland-Altman and the reliability with the coefficient of variation (CV). Ten elite-level football players performed ten series of 5 repetitions in a one-hand standing row exercise (5 series with each arm). A nearly perfect accuracy (ICC=.999) and a very good between-device reliability (Bias=-.010; CV=.017%) was found. IMU is a reliable and valid device to assess angular velocity in inertial flywheel workout objectively.

References

Andrade, M. S., De Lira, C. A., Koffes, F. C., Mascarin, N. C., Benedito-Silva, A. A., & Da Silva, A. C. (2012). Isokinetic hamstrings-to-quadriceps peak torque ratio: The influence of sport modality, gender, and angular velocity. Journal of Sports Sciences, 30(6), 547-553. https://doi.org/10.1080/02640414.2011.644249

Arai, T., Obuchi, S., & Shiba, Y. (2017). A novel clinical evaluation method using maximum angular velocity during knee extension to assess lower extremity muscle function of older adults. Archives of Gerontology and Geriatrics, 73, 143-147. https://doi.org/10.1016/j.archger.2017.07.015

Bastida-Castillo, A., Gómez-Carmona, C. D., & Pino-Ortega, J. (2016). Efectos del tipo de recuperación sobre la oxigenación muscular durante el ejercicio de sentadilla. Kronos, 15(2). https://revistakronos.info/articulo/efectos-del-tipo-de-recuperacion-sobre-la-oxigenacion-muscular-durante-el-ejercicio-de-sentadilla-2197-sa-h585d504674b3e

Burton, E., Lewin, G., Clemson, L., & Boldy. (2013). Effectiveness of a lifestyle exercise program for older people receiving a restorative home care service: A pragmatic randomized controlled trial. Clinical Interventions in Aging, 8, 1591-1601. https://doi.org/10.2147/CIA.S44614

Cormie, P., Deane, R., & McBride, J. M. (2007). Methodological concerns for determining power output in the jump squat. The Journal of Strength and Conditioning Research, 21(2), 424. https://pubmed.ncbi.nlm.nih.gov/17530961/

Cormie, P., McBride, J. M., & McCaulley, G. O. (2007). Validation of power measurement techniques in dynamic lower body resistance exercises. Journal of Applied Biomechanics, 23(2), 103-118. https://doi.org/10.1123/jab.23.2.103

Crewther, B. T., Kilduff, L. P., Cunningham, D. J., Cook, C., Owen, N., & Yang, G.-Z. (2011). Validating two systems for estimating force and power. International Journal of Sports Medicine, 32(04), 254-258. https://doi.org/10.1055/s-0030-1270487

de Hoyo, M., Sañudo, B., Carrasco, L., Mateo-Cortes, J., Domínguez-Cobo, S., Fernandes, O., Del Ojo, J. J., & Gonzalo-Skok, O. (2016). Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. Journal of Sports Sciences, 34(14), 1380-1387. https://doi.org/10.1080/02640414.2016.1157624

Edwan, E., Knedlik, S., & Loffeld, O. (2012). Angular motion estimation using dynamic models in a Gyro-Free inertial measurement unit. Sensors, 12(5), 5310-5327. https://doi.org/10.3390/s120505310

Ex-Lubeskie, C. L. (2013). Evaluation of angular velocity data from inertial measurement units for use in clinical settings. Clemson University. http://search.proquest.com/openview/9d4bd5c2c3d2cae0d2015a91316e0209/1?pq-origsite=gscholar&cbl=18750&diss=y

Fong, D. T.-P., & Chan, Y.-Y. (2010). The use of wearable inertial motion sensors in human lower limb biomechanics studies: A systematic review. Sensors, 10(12), 11556-11565. https://doi.org/10.3390/s101211556

García-Orea, G., Heredia, J., Aguilera, J., Arenas, A., & Pérez-Caballero, C. (2017). Dispositivos para la medición de la velocidad de ejecución en el entrenamiento de la fuerza: ¿Todos valen para lo mismo? International Journal of Physical Exercise and Health Science for Trainers, 1(2), 1-6. https://g-se.com/dispositivos-para-la-medicion-de-la-velocidad-de-ejecucion-en-el-entrenamiento-de-la-fuerza-todos-valen-para-lo-mismo-2272-sa-5590fae089d4bc

García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Haff, G. G. (2017). Mean velocity vs. mean propulsive velocity vs. peak velocity: Which variable determines bench press relative load with higher reliability? Journal of Strength and Conditioning Research, 32(5), 1273-1279. https://doi.org/10.1519/JSC.0000000000001998

García-Ramos, A., Stirn, I., Strojnik, V., Padial, P., De la Fuente, B., Argüelles-Cienfuegos, J., & Feriche, B. (2016). Comparison of the force-, velocity-, and power-time curves recorded with a force plate and a linear velocity transducer. Sports Biomechanics, 15(3), 329-341. https://doi.org/10.1080/14763141.2016.1161821

Garnacho-Castaño, M. V., López-Lastra, S., & Maté-Muñoz, J. L. (2015). Reliability and validity assessment of a linear position transducer. Journal of sports science & medicine, 14(1), 128. https://pubmed.ncbi.nlm.nih.gov/25729300/

Geirsdottir, O. G., Arnarson, A., Briem, K., Ramel, A., Jonsson, P. V., & Thorsdottir, I. (2012). Effect of 12-Week Resistance Exercise Program on Body Composition, Muscle Strength, Physical Function, and Glucose Metabolism in Healthy, Insulin-Resistant, and Diabetic Elderly Icelanders. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 67(11), 1259-1265. https://doi.org/10.1093/gerona/gls096

Glowinski, S., Blazejewski, A., & Krzyzynski, T. (2017). Human Gait Feature Detection Using Inertial Sensors Wavelets. Wearable Robotics: Challenges and Trends, 16, 397-401. https://doi.org/10.1007/978-3-319-46532-6_65

Gómez-Carmona, C. D., Bastida-Castillo, A., Rojas-Valverde, D., de la Cruz-Sánchez, E., García-Rubio, J., Ibáñez, S. J., & Pino-Ortega, J. (2020). Lower-limb dynamics of muscle oxygen saturation during the back-squat exercise: Effects of training load and effort level. The Journal of Strength & Conditioning Research, 34(5), 1227-1236. https://doi.org/10.1519/jsc.0000000000003400

González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensity in Resistance Training. International Journal of Sports Medicine, 31(5), 347-352. https://doi.org/10.1055/s-0030-1248333

Goode, A. P., Reiman, M. P., Harris, L., DeLisa, L., Kauffman, A., Beltramo, D., Poole, C., Ledbetter, L., & Taylor, A. B. (2015). Eccentric training for prevention of hamstring injuries may depend on intervention compliance: A systematic review and meta-analysis. British Journal of Sports Medicine, 49(6), 349-356. https://doi.org/10.1136/bjsports-2014-093466

Hedayatpour, N., & Falla, D. (2015). Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. BioMed Research International, 2015, 1-7. https://doi.org/10.1155/2015/193741

Hibbert, O., Cheong, K., Grant, A., Beers, A., & Moizumi, T. (2008). A systematic review of the effectiveness of eccentric strength training in the prevention of hamstring muscle strains in otherwise healthy individuals. North American journal of sports physical therapy: NAJSPT, 3(2), 67-81. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953322/

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science: Medicine & Science in Sports & Exercise, 41(1), 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278

Hori, N., Newton, R. U., Andrews, W. A., Kawamori, N., & others. (2007). Comparison of four different methods to measure power output during the hang power clean and the weighted jump squat. Journal of Strength and Conditioning Research, 21(2), 314-320. https://doi.org/10.1519/r-22896.1

Igari, M., Tomita, Y., Miyasaka, H., Orand, A., Tanino, G., Inoue, K., & Sonoda, S. (2014). Development of a method for measuring joint torque using an isokinetic machine. Japanese Journal of Comprehensive Rehabilitation Science, 5, 141–146. https://doi.org/10.11336/jjcrs.5.141

Lauersen, J. B., Bertelsen, D. M., & Andersen, L. B. (2014). The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 48(11), 871-877. https://doi.org/10.1136/bjsports-2013-092538

Maroto-Izquierdo, S., García-López, D., Fernandez-Gonzalo, R., Moreira, O. C., González-Gallego, J., & de Paz, J. A. (2017). Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 20(10), 943-951. https://doi.org/10.1016/j.jsams.2017.03.004

Misu, S., Asai, T., Ono, R., Sawa, R., Tsutsumimoto, K., Ando, H., & Doi, T. (2017). Development and validity of methods for the estimation of temporal gait parameters from heel-attached inertial sensors in younger and older adults. Gait & Posture, 57, 295-298. https://doi.org/10.1016/j.gaitpost.2017.06.022

Mollinedo-Ponce-de-León, H. R., Martínez-Delgadillo, S. A., Mendoza-Escamilla, V. X., Gutiérrez-Torres, C. C., & Jiménez-Bernal, J. A. (2012). Evaluation of the Effect of the Rotational Electrode Speed in an Electrochemical Reactor Using Computational Fluid Dynamics (CFD) Analysis. Industrial & Engineering Chemistry Research, 51(17), 5947-5952. https://doi.org/10.1021/ie201782m

Mooney, R., Corley, G., Godfrey, A., Quinlan, L., & ÓLaighin, G. (2016). Inertial Sensor Technology for Elite Swimming Performance Analysis: A Systematic Review. Sensors, 16(1), 18. https://doi.org/10.3390/s16010018

Morán-Navarro, R., Martínez-Cava, A., Sánchez-Medina, L., Mora-Rodríguez, R., González-Badillo, J. J., & Pallarés, J. G. (2019). Movement velocity as a measure of level of effort during resistance exercise: Journal of Strength and Conditioning Research, 33(6), 1496-1504. https://doi.org/10.1519/JSC.0000000000002017

Pérez-Castilla, A., Feriche, B., Jaric, S., Padial, P., & García-Ramos, A. (2017). Validity of a Linear Velocity Transducer for Testing Maximum Vertical Jumps. Journal of Applied Biomechanics, 33(5), 388-392. https://doi.org/10.1123/jab.2016-0142

Roig, M., O’Brien, K., Kirk, G., Murray, R., McKinnon, P., Shadgan, B., & Reid, W. D. (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. British Journal of Sports Medicine, 43(8), 556-568. https://doi.org/10.1136/bjsm.2008.051417

Sánchez-Medina, L., González-Badillo, J., Pérez, C., & Pallarés, J. (2014). Velocity- and Power-Load Relationships of the Bench Pull vs. Bench Press Exercises. International Journal of Sports Medicine, 35(03), 209-216. https://doi.org/10.1055/s-0033-1351252

Śliwowski, R., Grygorowicz, M., Hojszyk, R., & Jadczak, Ł. (2017a). The isokinetic strength profile of elite soccer players according to playing position. PLOS ONE, 12(7). https://doi.org/10.1371/journal.pone.0182177

Śliwowski, R., Grygorowicz, M., Hojszyk, R., & Jadczak, Ł. (2017b). The isokinetic strength profile of elite soccer players according to playing position. PLOS ONE, 12(7). https://doi.org/10.1371/journal.pone.0182177

Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The Importance of Muscular Strength in Athletic Performance. Sports Medicine, 46(10), 1419-1449. https://doi.org/10.1007/s40279-016-0486-0

Vincent, W. J., & Weir, J. P. (2012). Statistics in Kinesiology (4th ed.). Human Kinetics.

Walker, C., Sinclair, P., Graham, K., & Cobley, S. (2017). The validation and application of Inertial Measurement Units to springboard diving. Sports Biomechanics, 16(4), 485-500. https://doi.org/10.1080/14763141.2016.1246596

Published

2021-11-24

How to Cite

Pino-Ortega, J., Hernández-Belmonte, A., Bastida-Castillo, A., Gómez-Carmona, C., & Rojas-Valverde, D. (2021). Accuracy and Reliability of Inertial Devices for Load Assessment During Flywheel Workout. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 19(1), 1-11. https://doi.org/10.15359/mhs.19-1.1

How to Cite

Pino-Ortega, J., Hernández-Belmonte, A., Bastida-Castillo, A., Gómez-Carmona, C., & Rojas-Valverde, D. (2021). Accuracy and Reliability of Inertial Devices for Load Assessment During Flywheel Workout. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 19(1), 1-11. https://doi.org/10.15359/mhs.19-1.1

Comentarios (ver términos de uso)

Most read articles by the same author(s)