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THE MAGNETIC ELASTIC DISPERSION

RESUMEN

Se ha efectuado un estudio del “scattering”
elastico de un electron en un campo magnético ho-
mogeéneo constante, Se evidencia como la seccion
transversal depende de la orientacion del “spin”
del electron, Si la polarizacion del “‘spin'’ se efec-
Hig a lo largo o contra el campo externo, enfonces
fa seccion transversal es cuatro veces mayor que
ésa, cuando lg polarizacion del *‘spin’ apunta en
la direccion de su propio movimiento.

ABSTRACT

We present a study of the elastic scattering
of an electron in a constant homogeneous magnetic
field. The dependency of the cross section on the
electron spin orientation is given_ If the spin polar-
ization is along or against the external fleld, then
the cross section is four times larger than the cross
section if the spin polarization pointed along its
OwH motion.

1. INTRODUCTION

The quantum snechanical study of the mo-
tion of fermions in a magnetic field has some
theoretical and experimental interesting aspects
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that have called the attention of physicists over
and over again '. Since the early days of the rela-
tivistic quantum mechanics we know that there is
an analytical solution of the Dirac equation for an
electron in an homogeneous constant magnetic
field both in cartesian and in cylindrical coordi-
nates *

The motion ot a charged particle in a con-
stant magnetic field is treated in both relativistic
and non-relativistic quantum theory by Johnson
and Lippmann®. By knowing the wave function of
the electron in an homogeneous magnetic field one
is able to calculate the transition rates of processes
such as magnetic Bremsstrahlung®, pair-creation
and pair-anihilation® in magnetic fields, quantum
modifications to the magnetic Bremsstrahlung®,
gravitational and electromagnetic radiation of rela-
tivistic particles’, polarization and spin effects in
synchrotron radiation®, transitions to the ground
state in synchrotron radiation®, ete.

The existence of magnetic fields of the order
of 10'? — 10! Gauss in the vicinity of pulsars'®
has developed interest among astrophysicists in the
effects of superstrong magnetic fields B ~ 10'?
Gauss in the elementary processes of quantum
electrodynamics.

The processes of synchrotron and cyclotron
3
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emission may be responsible for the hard radiation
observed from a variety of collapsed stellar ob-
jects'!. An understanding of the physics under
such condmons implies a knowledge of the various
quantum electrodynamical processes which occur
in such an intense field. As we have pointed out
above, much work has been done in this direction.
However, the case to be dlSCllSSed in this paper is
the elastic magnetic scattering! ?. We work in the
Furry framework!? where the S-matrix is

S = T exp(—ie J : Em (x) Yy - ¥ (x)

out
A:m x) d* x2),

where ¥ (x) is the wave function of the
electron in presence of A®X' and it is the
solution of the Dirac equation®*

(YHGEdy - eASK)—x) Ve(x) =0

If we expand the S—matrix as in the usual
perturbation theory (which is an expansion in o),
we can describe the matrix elements in terms of
Feynman’s diagrams. However, we_ introduce
double lines for the fermions in order to differen-
ciate this perturbation theory from the usual
Q.E.D.! %, We want to emphasize in this way that
we are using the solutions of the Dirac equation
and not plane waves. For the case to be treated
here we neglect the anomalous magnetic moment
solution' ®. In this paper we present detailed cal-
culations of the clectron elastic scattering in an
intense magnetic field. The transition rates studied
depend on the polarization of the electron spin
third component with respect to the direction of
the magnetic field. We alse consider the situation
when the spin points in the direction of motion.

2. MAGNETIC ELASTIC DISPERSION

When the electron collides with an intense
magnetic field some of the processes mentioned in
the introduction may occur. One of them could be
that the electron is dispersed elastically by the
magnetic field. The radiation processes of the elec-
tron in the magnetic field may be more imporiant
than the elastic ones, Nevertheless, the magnetic
elastic scattering of electrons is a good example in
which we can develop calculation skill utilizing
Dirac’s exact wave functions according to the
Furry's framework!”. The electron can be scat-
tered elastically one, two, . . . n-times by the
magnetic field, see Fig. 1. The convergence of the
transitions rates for those processes may be con-
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Figure 1

Feynman’s diagrams for the elastic scattering
of electrons in an external field, The alectron is
dispersed one time, two times, . . . n—times alas-
ticatly in the external field.

sidered as a test for the convergence of transitions
rates of the radiative processes of higher order.
Nevertheless, we should point out that there are
no detailed studies about the elastic dispersion of
electrons in a magnetic field!®

The S-mattix elen snt for the first order in
elastic scattering is

1
S =(—ie) [ a*x W (x) AL (x).
2.1
Win ()

where both ¥ . and W  are
the complete wave functions obtained by sgiwng
the Dirac equatmn with the external magnetic
field A "3‘ (x). The expression, explicitly, for an
homogeneous magnetic field along the z—axis is
the following

Al = — (Bf2) elk xk , el = et =1 22

e.l.l — 62‘2 =0

The incoming and outgoing electron wave
functions are
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Vi) = (y/La)tfe o (P32

X (p)u® ),
23

I - 1/2

¥ (0 = (v/Lu)fe
P32 5 DX (e,

Where x () is a matrix containing the radial part

in the x-y plane, plus angular terms of the wave
function; it is defined by

I q,s®ei®Ne 0o 0o 0
: iR
0 il ¢ (o). €*® o 0},
0o 0 pelE-De 4
1,5
')
0 0 0 il (o)e
wherep=v.1* andy = cB/2
In this expression the functions I, ¢ (o) and

(o) are the peneralized Laguerre functlons
drtlef}ned as follows.

1. (® —plZ

n,s

= {s!/n!').e
p (=92 ¢ n-s 25

P)

The spinors u (s) (k} are of two kinds: when
the third component of spin the electron points
along or opposite to the magnetic field and when
the spin orientation points along or opposite to
the motion of the electron.

We do not pretend to calculate the sum of
the diagrams of the Fig. | in order to prove the
convergence of the series, but instead we would
like to be concerned only with the first term of
the serie, which corresponds to the process when
the electron is scattered just one time. On the
other hand, it will allow us to develop the calcula-
tion techniques which are of relevance for the
radiative processes in the Furry’s framework!?®

A more detailed discussion and the prop-
erties of these spinors are presented in the appen-
dix,

We now substitute the above equations it
Eq. (2.1) and, through a straightforward calcu-
lation, we obtain the following expression for the
matrix element

= (~ie)(1/Ly' /) (B/2) 1276 (Bj—Ep))

2.6
[27 8(Py—P3e) 1vn TP o)y w9

_ where

= ()(y' +i7*) and Iy
(Y —i7?)

The transition probability for the first-order
elastic scattering process, |8 fi [? is thus given by

= ({1/2).

ISF1 =(?/L* v)(B/2® 2n T & (E; — Eg).
2. L.8(P3j—Pa).n 3 O

®)r' e ® @) &gy

2.7
RION(S)

The two delta functions contained in | Sf- | 2
correspond to the conservation of energy and to
the third component of momentum.

3. ELASTIC SCATTERING WITH POLARIZA-
TION PARALEL TO THE MAGNETIC FIELD

Eq. (2.8) is so general, that for the case we
are concerned with we just have to substitute the
corresponding spinors in order to analyze the cross
section derived from it. Thus, taking into account
the orientation along the magnetic field of the
incoming and cutgoing third component of the
electron spin, the differential cross sections are
going to be given in terms of | S | 2 and the spin
orientation by the expressions

do"PUP = (m?*/8 #* ) (B/R, ) (P /

—
[P 12) n [1 + (B + m)?/ 3.1

(P,

> cos &+ 2m(E; + m) + P;3)
where B, =m® ¢? [ he = 4.414.10'® Gauss is
the critical field. Moreover we have used the
following kinematical relations under a cylindrical
symmetry of the magnetic field and just considering
that the collision takes place at the origen of ¢oor-
dinates



Pdez and Semionavs. The magnetic elastic dispersion

14 f
ga-du ENERGY=2 MEV
1l dy P3=01 MEY

-
L]
T

ey
T

o

£
- Ty

L]

DIFFERE NTIAL CROSS SECTION ANGULAR PART

30° 180° 2700
DISPERSION ANGLE @

364

L=
oD
n

Figure 2

The differential cross section angular part of
an electron dispersed elastically by an external
field. The energy of the electron is 2 Mev. with a
small momentum third component of. 1 Mev.

do 9OWILUP = (142 /8 77 ) (B/B_) (P;3%/

p P oni—1 +(B +mp/ 32

(P4
where B, = m? ¢*/ he = 4.414.10'2,
Gauss is the critical field. Moreover we have used
the following kinematical relations under a
cylindrical symmetry of the magnetic field and
just considering that the collision takes place at
the origen of cocrdinates

T cos &+ 2m(F; +m) +P3¥)i

2 2 2

= m? +Pi'§+47n 3.3

Pil = Pi cOos W Pfl = Pfcos 43

P, = Bjsin ¥ Py = Ppsin «

and setting p = ¥ - o as the dispersion angle of

6

the electron. It can easily be proved that Eq. 3.1
and Eq. 3.2 also fulkfill the relations

do UPs UP — dodown, down

34
do P, down _ 44 down, up

Now, for the case when we are not interested
in the dependency of the cross section on the spin
orientation, we must sum over the incident spin
polarization and average over the outgoing spin
orientation of the electron, thus obtaining.

2% _ (a2 /72
mniéi% 185 1%) = (' /L%y)
(B/B)Y 2 T8 (E;—Ep) (2nL)
3.5
5 (P ~ Pg) (/2) 20 (D (1) !
8

fi *5;
1 ) T6) (k) 4w k)

By constructing the differential cross section
as Bjorken and Drell indicate *, we get
w = dofdp = 142 Z sy 12 v?
£Sp £8,

Ey3 EpdBpdpey / 1(27)° T 1B 1 1 = g

= (m* /87) (B/B,; )P / By i n

(1 +cos @)

We should remember that all the above
equations are valid only under the assumption that
the quantum number § and 8’ be equal: =5’

4. MAGNETIC ELASTIC SCATTERING WITH
LONGITUDINAL POLARIZATION

In describing the scatiering of efectronsin a
magnetic field we may consider that the spin of
the incident electron points in the direction of
motion so that we may expect to get additional

* The potation and metric of Bjorken and Dret'4
are used throughout these calculations, We employ
a system of units in which h=¢=1.

N.B.: For simplicity in the calculations we do not

construct a uniform beam by taking an unweighted

average over the guiding center of the incident

electron (see (1): Langer SH).
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information about the elastic scattering. There are
some differences with respect to the case of the
preceding section. Specially the bounded wave
function has different spinors which caracterize
the two possibilities of orientation of the spin:
along the motion and opposite to it.

Also, from now an, we can study, with the
help of Eq. 2.8 the transition probabilities,
according to the spin polarizations of the incoming
and outgoing electron. The kinematic relations for
those processes is given by Eq. 3.3,

By constructing the differential cross section
when the incoming and outgoing spin of the
electron points in the direction of motion, we get

do''/dp = L ISy 1> Vv? E; Ep dEg
apgz /[V2T(2m?® [B] =
= (> B* /16 77) ({p)*
131 (®) Q0 + cos ¢)

If the outgoing electron leaves the magnetic
field with a spin orientation against the motion,
the cross section is

dﬂ' 1,2 ;Id‘p — 0 4‘2

It can easily be proved that the cross section,
for the case when the electron enters into the
magnetic fleld with spin orientation against the
motion and leaves it with spin oriented along the
motion, is also zero:

de 2+ jd¢ = 0 4.3

and the cross section also satisfies the relation

do '+t jdp = do?? [dp = (m” /8a) (B/B,)
P/ Fﬁil n(l + cos ¢)

An evident conclusion, from the above
equations, is that, if we consider the polarization
of the electron along the motion in the first order
of the elastic scattering process, there is not a
spin-flip. We should remark also that, from the

_preceding paragraph, the question arises of how

can an clectron be scattered when its motion is
along the magnetic field. We do not pretend to
answer it, but we leave it as an open problem to be
analized some other time. For the case in which
we sum over the incident spin polarization and
average over the outgoing spin orientation of the
electron, we get

do /dg = (m? /327) (B/B, ) (B2 / [F; )n o
(1 + cos ¢) .

It is remarkable that the cross sections for
the first order elastic scattering are different from
zero and that tells us that, although they may be
small compared with the radiation processes for
the sarthe energy of electron, they exist and are
finite.

It is one fourth of the cross section when we
take into account the spin orientation either along
the motion or against it.

5. CONCLUSIONS

Furthermore, the total quantum number
must be different from zero; if it is zero, then
P; = Pg= 0 and we do not have scattering at all.
If the electron has a small third component of the
momentum, there is a probability for the ocusrence
of spin flip in the case when the spin points along
the magnetic field. If the spin is along the motion
this phenomen does not occur,

By comparing both cases, when the electron
spin is along the magnetic field and the spin is along
the motion, and we do not care about the spin
polarization, the cross section for the first case is
four times greater than the second one. Both cross
sections have the same shape but the second is
just smallet by a factor of four.

Due to the fact that maximum of the cross
section appears when the dispersion angle is zero,
the magnetic field behaves as'a medium of different
refraction index, so that a ray of electrons is
refracted by the magnetic field and the ray emerges
somewhere but making the same angle with respect
16 the incident one. This is self-evident because of
the cylindrical symmetry of this problem and only
if we consider the motion in the plane x-y.
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APPENDIX: WAVYE FUNCTIONS AND SPINOR
ALGEBRA

a}  Third component spin polarization along the
magnetic field. In order to get a bettér
insight on the solutions of Dirac equa-
tion \13

(if—eA -~ x)¥ =

with the vector potential of the form

i =—B ey x o we consider the wave
functmn for tH% particle according to the
spin orientation along the magnetic field in
the following form:

Spin vp: it means that the third component
is oriented along the magnetic field

= V(3 Ln) ¢ Bt PF
x @) u D (p)

v ¢y "

Spin down: it means against the magnetic
field:

— Vyim ¢ Bt PF

x(eyu® (p)
where x (0) is defined in E 4,0 (p)

and u (p) are the bound-state spinors
defined as follows

v @)t s

E+m
0
W) = 1/VIB(E Ty K,
4ry
A3
0
E +m
@ () = 1/ 2EEFm) prn
_K3

The indixes appearing in the matrix x (p);
n, ¥, are the total quantum numbers, re-

spectively azimutally and 8 is related with
them through § = n — €. L is the periodical
length and finally

v = eB/f2

The solutions with negative energy corre-
sponding to the antiparticle are

v 31 = T(l)
A4

¥ iy - ce T

withC = i4 2 .4 ? . This allows us to obtain
the antiparticle spinors
4y n‘
-K
viD ) = 1/VZEE Tm) 3
0
E+m
spin down, A.5
K3
4vn
ve) () = 1/VIEEFm) E+m
0
spinup, A.S

For calculations with the above wave func-
tions it is usefull to keep a list of relations

between the spinors. They satisfy the fol-
lowing ortogonality relation

“© oy o © () = (m/E) (5
19 ) u® ) = (B (8 ) y

7 VO @) = - @B (5 )
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The free spinors can be obtained from the
above ones just by letting B =+ 0. The orto-
gonality is then

r
v (@ v =5,

. AT
_(r) ( )
v (0 v = -5
which is in accordance with the plane Q.E.D.

(Bjorken and Drell) (1#). By relating the free
spinors and the bound—state spinors we have

u®(p) = [m++*" E—v* Py ¢!
(VIR /VIEEF+m. D)
v @) = [m—2 B+ Py + 4 (VAT
VZEEFm. (v (o))

We can also construct proyection operators
as follows

A8

1 3

(1) —(2) (2)
As(p)=u (p.u (p+u (phu (p) =

(L2E) (m++°E—9* Py~ ¥/ 47n)
A9

(1 —(2) (2)

(1)
A=V .V @tV @.V @=

(—1f2E) (m . y° E +7° Py +y' Vayn)

If we apply A , (p) to the solution of the
Dirac equation one obtains only solutions with
positive frecuency (particle) or only solutions with
negative frecuency (antiparticle); it means

Ay @Oy = (m/Eyu O (p)
A.10
A. VO = (m/E)yv O

These proyection operators satisfy the following
relations

As(P)AL(p) =0

A+ (M) = (m/ E) A+ (p)
A+(p) +A_(p) = m/E
(A_(®) = —(/E)A_(p)
10

All

2 _ —(s}
2 0P 120 - vl v o) =
(WE) (1) o8

From the above we notice that the solutions
for the particle, i.e., for the antiparticle, alone, do
not form a complete system, this because the
aperators A . (p) are not equal to the unity matrix
and they have rather the properties of proyection
operators.

Some cothers useful rules for these aperators are
the fellowing:

ToAy (). 70 = A4 (p)
A+@) A () = £(E/m° A (p)
AP ALE) =1 AL
0O @ u® (p) = (Em) 6

Al2

vEO@vO @) = —(B/ms g

b) Spin polarization aleng the metion.
We consider the spinors of the eleciron along

the motion, which are: Spin orientation aleng the
direction of motion

VE Fm) (p Fk3)
V(EFm) (p—k3)
VE - m) (p Tkj)
VE—m) (p—ky)

Al3a

v = YyQ2VED

Spin orientation against the direction of motion,

VEFm) (pk3)
VEFm) (p ki)
VE-m (- ks)
VIE-m) (p Fk3)

A.13b

u@ @ = 1JVEp)
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The spincrs of the antiparticle follow form (A .4),
and we get

Vv (E—m)(p +kj)
Vv (E—m)(p - k)

v = 1IRVED) VEFm) (p Tky)
(E+m)(p— k3)
Al13c

VE-m (- Ky
~VE—m)(p TKy)
VE T - k)

V{E +m) (p +Kks}
A.13d

v = 1yQVED)

The satisfy the following ortogonality relation

u r) (k)u(s) (k) = (kDJ'Jk) 8 s
Al4

—(r)
vV VO R = ke /K5

The proyection operators constructed with
these operators are the same as the expressed in
Eq. A.9. The relations derived for these spinors
satisfy also Eq. A.10, Eq. A.11 and Eq. A. 12.
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