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MOTION IN MELVIN METRIC

RESUMEN

Se presenta un andlisis cualitative y numéri-
co que refleja como el foton v la particula de masa
con carga y sin ella se mueven bajo la influencia
pure de la métrica cilindrico-magnética de Melvin,

ABSTRACT

A qualitative and a numerical analysis fs
presented showing how the photon and charged
and uncharged particle with mass move under the
influence of Melvin's pure cylindrical magnetic
melric.

1. INTRODUCTION

The magnetic fields play an important and
decisive role in the possibility of observation of
the radiation of some massive stellar objects like
the neutrons stars, pulsars and black holes. Since
the discovery of the pulsar stars there has been
a rapid growth in astrophysics in reference to
the effects of superstrong magnetic fields
(B=10'? Gauss) on the radiative quantum
electrodynamics processes. Among these effects
the most significant are those involving the emission
of X-ray and -y -radiation, especially synchrotron
emission. Those processes may be the cause of the
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hard radiation observed in great variety of collapsing
stellar objects.

The purpose of this paper is not to calculate
some radiative processes in superstrong magnetic
fields (this will be reported elsewhere), but instead
to provide a better insight of the behavior of
classical motion of charged and uncharged particles
under the influence of extremely strong magnetic
fields, such as those existing in pulsar stars (or
neutron stars). This will in principle allow us to
better understand the radiative processes occurring
under such extreme conditions.

The oaly analytical model which reproduces
the strong influences of the magnetic field lines in
a limited region space is the Mclvin Universe and it
will be used as a first approach to the problem. It
is the simplest model of universe including this
interaction. The Melvin universe is a formal solution
of the Einstein-Maxwell equations and corresponds
to a classical description of magnetic field lines
parallel to each other and in equilibrium under
their mutual gravitational attraction. The paths of
photons, charged and uncharged particles in this
universe are examined. Section 2 presents a
description of the Melvin universe; in section 3
presents the equation of motion for the particles
subject to the Lorentz force. In section 4 contains
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Figure 1 Figure 2
The newtonian potential \ associated to the Mal-  The acceleration of gravity for the Melvin universe
vin metric is displayed as a function of p, as a function of p, With o = 1ithasa maximum of
acceleration,

quantitative analysis of the possible paths of the
particles in this universe. In section 5 discusses the ¥ = —in(l +GBj p* /4c*) 2.3
numerical results obtained by solving the equations
of motions and compare our results with those of

the Brnst metric 45-5) InFig, 1 displays the dependence of ¥ as a func-

tion of when GBZ / 4c” = 1. Notice that the accel-

2. THE MAGNETIC UNIVERSE OF MELVIN  cration of gravity has a maximun atpg=1. The ac-
celeration of gravity is represented in Fig. 2. The

This section presents the principal characte- magnetic field for this universe is given by
ristics of the Melvin universe. The geometry of the
cylindrical magnetic universe is give by. B = By/ A? 24

dS?= A2 {-(dct)? +d? p +dz2 }+p¥/ A d b2
2.1 and it is shown in Fig. 3. Its asymptotic behaviour
indicates that when p —> oothen B =0, but slowly.

where . ; -
This means that the magnetic field exits in every
L 2 2 s 5 point of the universe. In order to understand better
A:=1+GBjp® [ 4Ac 22 this universe, will be studied the classical behaviour
and B, is the magnetic field strength along the of charged particles. The analysis of the equations
s :

symmetry and axis, measured in Gauss units, G is of motions can be done thl:ee ways: by solving the
the gravitational constant and ¢ is the velocity of Lorentz equations, by solving the Elfler-lagrange
light. equations and by solving the Hamilton-Jacobi
equations. All of them are equivalent. The use of
The newtonian potential associated to this the Lorentz cquations was chosen because of
metric is simplicity,
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Figure 3

The behaviour of the magnetic field as a function
of p.

3.  THE EQUATIONS OF MOTION

The motion of a test charged particle in the
Melvin universe can be determined by solving the
Lorentz equations of motion. By knowing the
corresponding expression for F uv and the Cris-
toffel symbols for the Melvin metric, the following
coupled system of equations is obtained:

& r/dX +(B2.p/A) . (d7/d )
(dp/dXx)=0

4 z/d 2 +(B%. p/ A).(dz/d 2 ).
(dp/dr)=0 3.1
d p /d A* +(B* p/2 A).(dp/d N +
(B p*> /2 A% - p | A%) (dp/dA) —

—(B? p/24).(dz/dN)? +(B*. p/2A).
(d7/dAr)® = (eBp/m*c? A%) . dg/dA

A2 /dN+ 2(1/p—B p/2 A).(A/dN
(dp/dX) = —(e/me’). (B/p)(dp/dN)

where A is an affine parameter, These equations
are consistent with the ¢lassical equations of motion
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Figure 4
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The behaviour of the effective potencial R {p) as a
function of the wvariable p. This function is
displayed for the external field B=0.2 and m=0
and different anguiar momenta.

of a charged particle in a constant uniform magnetic
field wich points along the z-axis. This can be easily
be proved by putting B?> —>0 if the affine parame-
ter is the time 7 , It implies that the magnetic field
is weak in this universe.

The first integrals of the above system of
equations can be found analytically and they are:

dr/d A= E/ me.A?
dz/d A =p, /m. &?

d¢/dX=[L/m-~ (eBf mc?).

(p* /2 8) ] 4% }p? 3.2
dp/drx=1/A [E/fm?’c? — [Aa%c?
+pl /m? +(A*/p? ). (L/m—(eB/mc?).
(P*128)] 112

where L is the angular momentum of the particle.
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The integration of the last two equations give
elliptic functions which provide little insight. In
order to more easily analyze the results, they are
instead solved numerically.

4. THE QUALITATIVE ANALYSIS OF THE
PATHS

Some results can be easily obtained from a

qualitative analysis “*a la Peincare”. First, define
an effective potential as

Vipy=m:. A2+p§ + (A% [ p2).
(L—(eB/2 A). p?)? 4.1

and the function

1
R(p) = [E*-V(p)]'2 4.2
Next, introduce a new function

2 . g2 2
Us . =E -Pg 4.3

that to be called the transversal energy. For the
sake of simplicity the following cases are
considered:

1) The motion of uncharged particles with rest
mass equal to zere (the photon).

The corresponding equation of motion for
the photon is

d ¢/dp = L.a* / (p°
VE [ —a*L?p? —p})

4.4

This equation admits six other posibilities, they
are:

i} If B=0, then the motion of the photon is along
a straight line, This corresponds to the motion of a
photon in a Minkowski space. This motion is
invariant. under a rotation of x-y axis.

ii) If L =0, then d ¢/ d p =0. This implies aiso a
mation aleng a straight line.

iii) If d ¢ fd p =0, then we can get the critical
points of the path of the photon. By ii) one of the
solution is that L=0, it means that there are not
critical points and there is straight line motion,
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Figure b

The effective potential R (¢} as a function of p
with m ¥ 0. For this calculation m=1 and e=1.
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Figure &

The path of an electron under the influence of the
pure magnetic metric of Melvin. The energy is 40
units, the angular momentum is 6 and the external
fiald strenght is 0.2, We used G=c=1.
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Figure 7

The path of a positive charged particle (positron)
moving in the universa of Melvin,

Also the sclution A* =0 means that there are not
eritical points either.

iv) a) A helical motion results from setting p =
= constant. The radius of the orbit can be calcu-
lated by setting R { p)=0.

b) A circular motion exists if p, =0.
v) If U* =0, then equation (4.4) is reduced to

d¢/dp=La* /a7 p 4.5

This is pure imaginary for every g ¥0. It implies
no motion parallel to the z-axis for L+ 0. If p =0
them it satisfies point a) from above and it implies
that L must be equal to zerc and it admits mation
on the z-axis.

vi) The numerical calculation were made by taking
the adiabatic approximation of equation (4.4).
The result is shown in Fig. 8.

2) The motion of uncharged particles

The equation of motion for uncharged particles
is

d¢/dp=La* [(p*.

VEY - [m? e A% +p2 + (A% p?).L7])

This equations admits the following possibilities,
they are:

i) If B=0, then the motion is along a straight line.
It means the motion of a neutral particle in Min-
kowski space-time,

ii) If L=0, then the motion is also a straight line.

iii} The critical points can be calculated by letting
d¢ /dp=0

The solutions are two: one for L=0 and the
other one is for B? p? = -4. Both solutions implied
that there are not critical points.

i¥) a) The helical motion exists if p =constant. By
letting R (p) =0, we get the radius of the orbit.

b) The circular motion exists if p; =0

v) For the motion parallel to the z-axis we put

E? f¢? -pZ -m® c¢* =0.Then the expressiond ¢/ dp
is pure imaginary. It implies no parallel motion to
the z-axis. Because of the condition imposed in
point a) from above if L=0 there is motion on the
z-axis.

vi} A meridian motion exists if E2 / ¢? -p% -m?.
. A* | ¢® =0, This implies that Py = 0. It permits

PHOTON

E=4Q
L=&
B=02

18o= o°

270°

Figure 8

4.6 The photon is aiso curved by Melvin’s univarse.
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just motion on the z-axis for uncharged particles
with m#0 and L= Q.

3) The motijon for charged particles

The corresponding equation for the motion of
charged particles is

dg/fde = Q(p). A*/(p?

v E} ¢ — [m? ¢ A’+p;+(A4fpz)-Qz(ﬂ) )
4.7

where

Q(p) =L £ (eB/mc?). p2/2A 4.8

This equation admits the following possibilities:

i) If B=0 the motion js a straight Line. This can
easily be proved numerically and it corresponds to
the motionof charged particles in Minkowski
space—time under the influence of an extended
magnetic field given by (2.4).

ii) If =0, then the motion is not longer a straight
line.
This follows from the numerical calculation.

iii} The critical points can be calculated by leting
d¢ /d A=0.

This gives the following condition that must be
fullfilled

=\ —2¢* L(LB?c%t ¢B) 49

iv) a) The helical motion exists if p = constant.
The radius of the orbit is obtained by setting
R (p) =0. It means that

E?/c®—[m?.a%c? +p2 +(Aa%/p%).
Q*(p) 1 =0
b) The circular motion parameters are deter-

mined just by putting p, =0 in the equation from
above.

4.10
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v) The motion parallel to the z-axis mlpose the
condition that E?-[ m? , A% ¢? +p2 ] =01t
implies that d ¢ /d p is pure imaginary for every
p # 0. If p =0 then ii* satisfies point

a) from above and it follows then that if L=0
there is motion on the z-axis only.

5. CONCLUSION AND REMARKS

As was pointed out in the introduction, it
should be valuable to know about the motion of
charged and uncharged particles under the influence
of superstrong magnetic fields. As is known from
resent results from astrophysics, the pulsars or the
newtron stars have magnetic field of the order
B=0.1 B, where B ., 1s the critic magnetic fietd
of Schwinger (B, = m® ¢* jeh= 4.414.10"?
Gauss). This makes it appear that charged particles
in the accreation column of those stars are subject
to huge magnetic fields. Near the surface of the
star the influence of the gravitational field is also
the extremely large. Not considered in this analysis
is the presence of the mass of the star which also
influences the motion of the particles. However in
a region near the surface of the stars the condi-
tions for the existence of such magnetic field may
also be fullfilled. Nevertheless, a study including
gravitational effects has been done by Dadhich et
al, (®) For a numerical analysis suppose that p, =0.
Fig. 4 and fig. 5 show the effective potential for
different angular momentum. Fig. 6 and fig. 7
analyze the paths of the charged particles for the
same angular momentum and energy. By com a-
rision with the calculation of Dadhich et at {?
and Esteban (7) it is noted that the Melvin mctnc,
i.e, the influence of the magnetic field alone is not
a quantity to be neglected, although it is smaller
compared with the influence of the mass on the
path of the particle. As an additional remark, if
the field strenght is less than B < 0.05.B,,, it
makes no difference to use the Melvin or the
Minkowsky metric. This may have further
consequences for the calculation of radiative
processes under the influence of strong magnetic
fields.
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