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AN EQUIVALENT FORMULATION FOR
THE GRAPH ISOMORPHISM PROBLEM

A classical problem in graph theory is to find
an invarant that characterizes the set of graphs
isomorphic to a given one. “No decent complete
set of invariants for a graphis known. " [1,p. 11 }.
In this note we discuss, in an intuitive manner, a
solution to this problem that is not well-known in
the scientific community, probably because it was
published in Spanish [ 3 ].

A directed graph can be defined as a triple
G= (V;E; ¢), where V and E are finite sets, and @
is a one to one function that assigns to every
element of E an ordered pair of elements of V.
Geometrically, W is the set of edges (arrows), V
the set of vertices {nodes), and the map y assigns
to every edge its vertices according to some orien-
tation of the edge. Thus, for the directed graph
shown in figure 1,

v=[1,2, 3, 4,5}, E=[a, b, c, d, e, f,g h,il,
and ¢ (a)=(1, 2),

P(b)=(2, 1), W(c)=(2, 2), p(d)=(3, 2), ¥le)=
(2, 4), AH=(3, 4), A2)=(5, 3),

P(=(3, 5), p()=(5, 3).
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Figure 1

A graph G can also be represented by a ma-
trix, called the adjgcency matrix. To do this, we
number the graph’s vertices starting from 1, say
V=[1,2,...,n],and define
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1, if there is an arrow from veriex i to vertex j.
aij
0, if there is no such an arrow.

Thus, the adjacency matrix corresponding to
the graph shown in figure lis

Vi Vo V3 V, Vg

A 0 1 o0 0 0
v, 1 1 o0 1 o0
Vs 0 1 0o 1 1 (1)
V, 0 0 0 0 ©
Vg 0 o0 1 0 1

It is clear that the adjacency matrix of a given
graph depends on the way we number the graph’s
vertices (vertex designation); for example, if we
number the vertices of the graph shown in figure
1as in figure 2, then we obtain the matrix

Vi V2 Vi3 Vi Vs

v, 1 1 1 0 0

V, 0 0 0 0 0

Vs 1 0 0 0 o0 (2)
Va o 0 o 1 1

Vs 1 1 0 1 0

Two graphs G, and G, are isomorphic
if there exists a permutation of the vertex designa-
tion of one of them such that, when we redesignate
its vertices according to this permutation, its new
adjacency matrix coincides with the adjacency
matrix of the other graph. For example, the graphs
G, and G, of figure 1 and 3, respectively, whaose
adjacency matrices are the matrices (1} and (2),
are isomorphic. In fact if we redesignate the ver-
tices of G, according to the permutation

1 23 435
( ), then its adjacency matrix is (2).
31524
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Figure 3

The problem that we are dealing with can be
phrased as follows: Look for an algorithm by
means of which we can obtain for any given graph
an “entity” (the invariant) that remains unchanged
with respect to any variation on the graph’s vertex
designation. In other words, to a given pair of
graphs, such an algorithm ought to assign the same
invariant to each graph if and only if these graphs
are isomorphic,

Some authors have called this problem the
“coding problem™. Read and Corneil [ 2 ] charac-
terized the problem as “‘that of finding a good
algorithm for determining whether {wo given graphs
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are isomorphic. A closely related problem is the
‘coding problem’ —- that of finding a good algorithm
for assigning to every graph a ‘code’, i.e., a string
of symbols, in such a way that two graphs are
assigned the same code if and only if they are
isomorphic.”

We proceed to construct one algorithm of
the type mentioned, utilizing the graph G, shown
in figure 1, whose adjacency matrix is the matrix
(1). We define the characteristic function of the
graph G, as follows: Assign to the vertices 1, 2,
3, 4, 5 the real variables X, X3, X3, X4, Xg;n0W
if the i—th row of the adjacency matrix of G, has
ones in the columns jy, . . . j;, We assign to this row
the function

5%

. In our case, the first row
of matrix (1) corresponds to the function X, X2;

the second to X, X1%X2X4; thethird to X3 X2 X4 Xs;

and the fifth to X5 X3 Xs . In case some row has no
ones in it, we assign to this row jts corresponding
variable with exponent one; thus, the fourth row
of matrix (1) corresponds to the function Xj =X,.

The characteristic function of the graph G

is the product of the functions assigned to each
of the rows of its adjacency matrix, that is:

Xy X2 X, X1 X2 Xg X, X2 XaXs x, X XaXs

Finally, we restrict our variables to satisfy
the following condition:

(X;-2)%. (X3-2)*. (X3—2)%. (Xg—2)%. (Xs—-2)* +
(X;-3)2. (X3=3)%. (X3-3)%. (X4~3)*. (X5-3)* +
(X1-5)%. (X2-5)*. (X3—5)*. (Xq~5)*. (Xs-5)* +

(X =T (K- (K= (K¢~ Xs—7)* +

We also could consider x = [ Xy, X3, X3, X4,
Xs | as a subset of the natural numbers, and in this
case condition (3) can be replaced by

Xl .X2 .Xa.Xq,.Xs -235711=0 (4)

It is easy to see that the essential fact here is
that the variables take values on the set of prime
numbers, and that different varviables must take
different values.

In general, the characteristic function of a
directed graph with n vertices can be written as

T
C-TIx"

i=1

where a;; is the (j, j) —element of the adjacency
matrix. In case we consider x=[X,,Xs,-.... Xl
as a subset of the real number, the restriction takes
the form

ZI’]’ X —p)* =0

j=1

where =123, ..., pn]isthesetofthefirstn
prime numbers. If x is considered as a subset of the
natural numbers, then the restrction corresponds

to the equation:
IT 5 ~TTe=o

ped

3

(X ~11) (X 112 (X3—11)*(Xg—11)2(X5—11)? =0
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The invariant we are looking for is the
maximum of the characteristic function subject to
the corresponding restriction. The proof of this

invariance is explained in 3, but it is so direct and
simple that the reader can find it for himself. In
our example, this invariant is

Max @ = Max X, X2 X, X1 X2 X5 X, X2 XaXs x, %, X Xs;

subject to (3) if the variables take real values, ot
(4) if they take values in the set of natural numbers,
respectively.

MaxQG, = Max X, X1 XaXa:X,.

subject to (3} or (4); and as it was pointed out
above, Max-cG1 = Max G,.

Summarizing, the maxima of the characteris-
tic functions of two graphs agree if and only if
these graphs are isomorphic. This invariant is not
the only one which characterizes the set of graphs
isomorphic to a given one. The minimum of the
characteristic function is also an invariant in the
same sense, meaning that the minima of the
characteristic functions of two given graphs agree
if and only if the graphs are isomorphic. It is
abvious that for any completely symmetric graph
Gy, ie. for any graph whose adjacency matrix re-
mains invariant under any permutation of the ver-
tex designation, we should have

Max e(3.s =Min GGS.

Figure 4
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If we had started with the graph G, instead
of G;, we should get as invariant

X3 X1 X, XaXs X X1 X2 Xa,

The characteristic function is not the only
tool to construct invariants for the set of graphs
isomorphic to a given one. As an example of a dif-
ferent method, consider the n® elements of the
adjacency matrix of a given directed graph. Write
them in a row according to some previously estab-
lished order on the entries of the matrix ; the result
will be a binary number, Now to each of the n!
permutations of the vertex designation corre-
sponds one well-defined binary number. This
set of n! numbers has a maximum and a minimum,
and each one of them is an invariant of the type
we are looking for.

Following these ideas the reader may be able
to find other invariants to characterize the set of
graphs isomozrphic to a given one.

Aside from the great thearetical interest of
finding invariants of the type mentioned, the ef-
fective computation of them via a polynomial-
bound algorithm would constitue one way to
solve the graph isomorphism problem: Find an
efficient method to establish whether two given
graphs are isomorphic. We shall treat these prob-
lems in a forthcoming article.

The sclution of the graph isomorphism prob-
lern has not only academic intergst, but also prac-
tical importance in such areas as: a) the establish-
ment of a unified nomenclature in organic chemis-
try, b) the applicability of the analysis done one
certain systems (e.g. electronic circuits) to others
of the same type, and ¢) measuring the degree of
complexity of a variety of systems.

Finally we note that the methods which we
have applied to directed graphs can also be ex-
tended in 2 natural way to other kinds of graphs,



UNICIENCIA

namely non-directed graphs, weighted graphs, and
labeled graphs. As an example we consider the case
of the non-directed graphs. Change each are which
joins distinct vertices to a pair of arrows in oppo-
site directions; change each closed are to a single
arrow. Thus, we obtain a directed graph such that
any invariant {under vertex designation) for this
graph is also an invariant of the same type for the
non-directed graph. Following this criterion, the
non-directed graph shown in figure 4 can be con-
sidered as the directed one of figure 5.

When we are working in a “‘wniverse” of non-di-
rected graphs, there is no problem in considering
as an invariant of a given graph the invariant of the
corresponding directed graph.

Figure 5
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