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ABSTRACT

This article deals with the test and assess-
ment of two different methods for performing the
downward continuation of the disturbing potential.
The disturbing potential is important in geodesy
since it is a fundamental quantity in the determina-
tion of the geoid. Nowadays, one of the most used
methods for the determination of the disturbing
potential is by the processing of airborne gravity
data. The resulting disturbing potential is given at
flight height, thus the downward continuation
from flight height o the terrain is of great impor-
tance. In this study, the downward continuation of
the disturbing potential is performed via Poisson’s
integral by the use of two methods: the gradient
method and the iterative solution. The theoretical
aspects of the methods are introduced and develo-
ped. Numerical aspects of the computations are
treated as well. From the experiment and the used
data, we conclude that the iterative solution yields
better results, in terms of accuracy, than the gra-
dientmethod. The test was performed from upward
continued disturbing potentials over a mountai-
nous area.

KEYWORDS: downward continuation, disturbing
potential, harmonic function, Poisson Integral.

RESUMEN

En este articulo se prueban y valoran dos
métodos diferentes para la realizacidn de la conti-
nuacién descendente de potencial perturbante. La
importancia del potencial perturbante en geodesia

Heredia, Costa Rica
Email: jserpas@una.ac.cr

reside en que éste es fundamental en la determina-
cién del geoide. En la actualidad, cada vez mas,
datos provenientes de vuelos gravimeétricos son
usados para la determinacién del potencial pertur-
bante. Debido a que el potencial perturbador resul-
tante estd dado a la altura de vuelo, es necesario
aplicar la continuacién descendente al terreno. En
este estudio, la continuacién descendente del po-
tencial perturbante es realizada usando la integral
de Poisson mediante la aplicacion de dos métodos
diferentes: el método de gradiente v la solucién
iterativa. Los aspectos tedricos de los métodos son
discutidos y desarrollados. Se tratarin también los
aspectos numéricos a considerar en los cdlculos. A
partir del experimento y con los datos usados,
concluimos que la solucidn iterativa produce mejo-
res resultados, en términos de exactitud, que el
método de gradiente. La prueba esrealizada a partir
de datos continuados ascendentemente en una zona
montaiosa.

PALABRAS CLAVES: continuacidn descenden-
te, potencial perturbador, funcién arménica, inte-
gral de Poisson.

1. INTRODUCTION

The downward continuation is known to be
an ill-posed problem and errors in the data are
amplified by this procedure. When downward con-
tinuing gravity airborne data, the honizontal com-
ponents of the gravity disturbance vector are not as
well determined as the vertical component, meaning
that the error in the solution of the horizontal
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components is larger and a bigger concern, a study
is necessary in order to determine the effect of
thedownward continuation in the results. The
downward continuation by the use of Poisson’s
integral is studied.

Inversion and iterative methods for the
downward continuation have been implemented
and tested, and we find numerous studies for its
solution, e.g. Wang (1988), Vanicek et al. (1996),
Garcia (2000), Novak and Heck (2002}. In general,
both methods are based in solving Poisson’s inte-
gral. The difference is in the approach used for its
solution. In general, when dealing with real noisy
data, the downward continuation is an ill condition
problem. For the case of the inversion method, a
regularization parameter has to be introduced, The
solution will strongly depend on the right choice of
the regularization parameter, and for large amount
of gridded data, the inversion of an even larger
system is needed. This method is only introduced
for completeness, butitis not used in the test due to
the reasons exposed above. In the iterative method
no regularization parameter is needed explicitly,
but sometimes the convergence of the solution is
slow, depending on the characteristics of the surface
where the original quantities are given (e.g. moun-
tainous terrain}. In this case, special attention has to
be placed on the convergence criteria for the sys-
tem. We need the process to provide an acceptable
solution close to reality. Another way to compute
the downward continuation consists in the use of the
gradient method. This provides a direct solution
where no regularization or iteration is necessary.
One drawback of this method is that the data have to
be given at a constant height. For the case of airborne
data this method could be used as an alternative.
Moreover, when using this method, it is customary to
consider only first order terms for its solution while
second and higher order terms are neglected.

2. CONTINUATION OF HARMONIC
FUNCTIONS

When we need 1o know the values of a
harmonic function above or below the surface
where the actual values are given on, we have to
continue (upward or downward) such a function
through space. A harmonic function can be conti-
nued by the use of Poisson’s integral. Depending

158

on the desired continuation some problems have to
be considered. Contrary to the upward continua-
tion, the downward continuation of a noise set of
data, representing a harmonic function, is proble-
matic since it represents an ill-posed and ill-condi-
tioned problem. When dealing with airborne data,
the downward continuation is very important and
deserves special attention since our observations
have to be reduced to the terrain, to the geoid. The
upward and downward continuation are studied
and some basic formulas are given.

2.1  The upward continuation

If we need to know the values of a harmonic
function above a reference surface we could use
Poisson’s integral. Poisson’s integral is the solu-
tion of Dirichlet’s problem for an exterior space,
for a spherical boundary and it is written as (Heis-
kanen and Moritz, 1967, p. 35):

sin@'d@'dA’
(1)
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where /= Nfr +R? —2Rr cow,} V is a harmonic
function, and
W = arccos[cosBcosd'+sinOsin @' cos(A' —A)]

We could also continue a harmonic function
if we know the value of the gradients of such
function on the surface. The function can be expan-
ded as a Taylor series as follows:
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by neglecting second and higher order terms, this
equation can be written in linear approximation as:
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The radial derivative of the function V in a
point P(R.6,4) taking values on a sphere of radius
R.is given by (Heiskanen and Moritz, 1967, p. 38):
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with / = R\/E(l —coswy) =2 RSiI{%]

Note that this equation can be used as a
gradient operator for either upward or downward
continuation of a harmonic function. This formula
can be used provided that the values of the function
are given on a surface with constant radius.

2.2  The downward continuation

Several ways to compute the downward
continuation can be identified. The ones mostly
used include the gradient method according to
equation {3), the iterative solution, and the direct
inversion of Poisson’s integral. The latter method
usually introduces a regularization parameter,
which for real data is not easy to determine, as it is
done by trial and error with simulated data (e.g., see
Garcia, 2000). An optimal determination of the
regularization parameter is introduced by Schaffrin
et al., 2003; see also Koch and Kusche (2002). A
brief introduction to the above methods is given
next.

2.2.1 The gradient method

As already mentioned we could downward
continue a harmonic function by the use of the
radial derivative of such function. For the case of
the disturbing potential we can write the Taylor
series expansion as:

.. dT
T(R,B,A)=T(R+h,0,4) - -

19T
2 0r
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r=R+h

r=R+h

Neglecting second and higher order terms
we can write:
JaT

T(R.BA)=T(R+hOA)——
T

h (5)

r=R+h

Now, under the assumption that the data are
given on a surface of constant radius r we can make
use of equation (4} yielding:
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2.2.2 Iterative solution of Poisson’s integral

Another way to downward continue the
disturbing potential is by the use of equation (1) in
an iterative way. In order to do so let us write this
equation as:

Rir =R T
T,=—— 2 || —d
: 4m U Tl (6)‘

with T" =T(R,¢",A") the disturbing potential on s
that generates the disturbing potential Tp=T(r,cp,7L)
at a height h;,, and r=R+h,,

We can now multiply both sides by R/r
giving:
R R*(r’-R*? T
—~ilpis g ” —do )
T 47 s
and using the substitution (Heiskanen and Moritz,
1967, p. 317).

/ R

TR+h, ;

now write equation (7) as:

-2 T
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Using the identity (Heiskanen and Moritz,
1967, equation (8-86))

, (=% f( do
YT ” D’ @

and multiplying (9) by T; and subtracting it from
(8) gives:

e (=) T-T,
(T, - 0Ty == ﬂ Stdo (10)
which can be written as: ’
. T, 1-tt T -T,
T="Lt—— Pdo 1N

2
This equation can be evaluated iteratively

where we solve for T . For its solution we begin
by taking:
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(T,),=T
and for the first iteration we compute:
g I T, ~('T.:de
an T D
with this result we compute the next iteration as:

1, =T [y

and so on for the rest oi points.

(T)), =2~

For values of Tp given at a constant altitude
h, we can now writeequation (11) is planar approxi-
mation as:

|

2n B p

pdx dy (12)

with:

= Jx=x )+ y—y )i
where we consider the following approximations:
r*-R*z2RH, r R do =R*do = dxdyand—
2.2.3 Inversion of Poisson’s integral
By means of inverting equation (1) we can
downward continue a harmonic function. This equa-

tion can be written as:

V=A Vi (13)
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The least squares solution is given by:
V. =(ATAY'ATY, (14)
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The inversion of the matrix in parenthesis in
equation {14) is problematic since this matrix re-
presents an ill-conditioned system. A regulariza-
tion scheme might be adopted. The solution is
found by adding a regularization parameter a to the
diagonal elements and the solution is found as
follows:
Ve=(ATA+al) ATV, (15)

An extensive study of how to determine the
regularization parameter can be found in Garcia
(2000), and an “optimal” choice is provided by
Schaffrin er al. (2003).

3 NUMERICAL TREATMENT FORTHE
DOWNWARD CONTINUATION

In this part, the numerical implementation
of the downward continuation of a harmonic func-
tion is explained. Also a test is performed to exami-
ne the accuracy of the gradient and the iterative
methods. The inversion method is not included
since it would require that a suitable regularization
parameter be determined. The solution would de-
pend strongly on the estimated regularization para-
meter, and this parameter depends on the characte-
ristics of a particular problem, and the data collected.
Recently, Schaffrin ef af. (2003) introduce an “op-
timal™ estimation of the regularization parameter.
The use of this optimal estimation should be exami-
ned in future studies.

3.1  The gradient method

The gradient formula for continuation of
harmonic functions for discrete data can be written
according to equation (14) as:

2 | I RA(pA}L
dr ,=R_ R 21 ‘Pz;’, 312“ {

with n the number of parallels, and m the number of .
meridians in the grid.

cos(p (16)

Equation (16) presents singularities at the
T . . 1
origin for the kernel function ;. By means of

the discretization of equation (16) we can avoid the
singularity since this equation canbe written as (see
Jekeli, 2001 }:
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where [ 1 is the kernel at the origin, theoretically
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However, we can see that this equation does
not depend on the kernel at the origin since:

[Ty, = 1T, )y, -
For a more rigorous, but rarely applied co-
rrection for the contribution of the innermost zone

the reader is referred to Jekeli (2001, pp. 4-10), and
Heiskanen and Moritz (1967, pp. 121-122).

Equation (16) can be written as:

. T 5
a_r z___f'_+m['[‘*f_'rpg] (17)
ol R 21
with: £ =2 dg_z 2 CO“’"’

o e R

where [, = ZRSir{g—rJ

and, the symbol * in equation (17) is used to
represent a convolution.

The second term of equation (16) is an
approximate convolution in T and 1, and could be
evaluated, via fast Fourier transform in 1D (1D-
FFT) along the parallels and numerical integration
along the meridians (Haagmans ef af., 1993). For
detailed development of the Fourier transform and
applications in geodetic problems the reader is
referred to Bracewell (1965), Schwarz et af. (1990},
and Jekeli (2001). The downward continued distur-
bing potential is written as:

g
dr

where T" is the downward continued field,
T is the original field,
H is the height at which T is given and at

which 3—T 1s evaluated.
T

equation (16) can a]so be written in planar approxi-
mation as:

dT AxAyE i T- T

=l =l u
with M and N the number of points in x and y
directions, .
‘Ax = R A,
Ay =R AA cos @,
@, the mean latitude in the area of compu-
tation, and

dy = \X(_;;_ x,) (¥ = yp)z :

(18)

Now equation (18) can be written as:

dT _ AxAy
—= T#f-T (19)
oh 2w “om | o8]
| 5o
with: f':»—,{—,andgzz Z F
il

The convolution can be computed via a 2D-
FFT as:
dT _ AxAy

dh 2n

where DFT and DFT stand for the direct and
inverse Fourier transform operators respectively.
The values for the downward continued disturban-
ce potential are now computed as:

{DFT"I[DFT(T)DFT(f)]—'I'pg} (20)

T =7-2g.
oh

3.2 The iterative solution of Poisson’s

integral

For the case of the iterative Poisson’s solu-
tion we write equation (1 1) in discrete form as:

TF::I[.- ]—-t )A@&A Z 2

¢ W= sy

cmq) 20
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Notice that the second term in equation (21)
is an approximate convolution. It depends on @, A
and h!,, and cannot be evaluated via FFT, unless we
consider a constant height. For the case of airborne
data we can considerthe height almost constant and
evaluate equation (21} as convolution by using a
similar procedure to the numerical implementation
of (17). Equation (21) has to be iterated until the
maximum difference in the area of computation
between two consecutive solutions is not larger
than a chosen threshold.

For the case of the planarapproximation and
assuming constant height, the downward continua-
tioncan be computed by the use of 2D-FFT. We can
write the planar approximation for the iterative
formula (equation (12)) for the discrete case as:

. HAxAy < & T°-T,
szTp_ 2;}’22 3P

(22)

=1 j=1 i
with M and N the number of points in x and y
directions,
Ax =R Ag,
Ay =R AA cos @,
@, the mean latitude in the area of com-
putation,
= _\I/(xi —x) Hy —y,) HHE
H the height where the original field is
located.
Now equation {22) can be written as:
. HAXAY . .
T =T, - [T *f - T'g] (23)
o
I A |
with: f=[—3 cand g=3 Y =
=l =l

Each iteration of equation (23) can now be
computed by the use of the 2D-FFT as:

T =T, - HAxAy
d T

{DFT '[DFT(T" )DFT(H)] - T, g}
(24)
Again the iterations are stopped when a

given threshold for the maximum difference bet-
ween two consecutive solutions is reached.
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4. TEST RESULTS

For the evaluation of the gradient and the
iterative solutions of Poisson’s integral for
the downward continuation, a test area in the Cana-
dian Rocky Mountains is chosen. The height used
is consistent with collected data by airborne sen-
sors. The data for the test are located in an area
between latitudes 50° 09" and 51° 26°, and longitu-
des from243° 0971024508’ ona 1" by I’ grid. The
disturbing potential at geoid level is computed
from the Geoid99 (GSS599) model obtained from
NGS (Smith and Roman, 2001). Then the distur-
bing potential is computed at a height of 4630 m by
using the upward continuation equation (2-22) in
planar approximation. Finally the disturbing po-
tential at this altitude is downward continued by the
use of the iterative and gradient formulas in planar
approximation and it is compared to the original
field. Before the comparison, a strip of 20 around
the area of computation is removed from the results
to diminish edge effects. In Figure 3.1 the original
and the upward continued fields are presented.
Both solutions for the downward continuation can
also be observed. Statistics for the original and
upward continued disturbing potential are presen-
ted in Table 3.1, and statistics for the differences of
the downward continuation with respect to the
original field in Table 3.2.

We can observe that the iterative solution
for the downward continuation of the disturbing
potential provides better results than the applica-
tion of the gradient method. This can be observed
not only from the statistics of the differences but
also by visually inspecting the results. We can
observe how Figure 3.1 (d) better describes the
original field, as opposed to Figure 3.2 (c).

Table 3.1. Statistics for the original and
upward continued gravity disturbances.

Mean Stddev  Min Max
[m¥s?]  Hm¥s% [m¥s?] [m¥s})
(a) Original field -13627 939 -151.26 -123.03
continued field  -136.83  7.69  -148.59 -125.94
()-(b) 056 177 291 344
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a) Original field
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Figure 3.1. Original and upward continued field (a), (b), and the downward continuation solution
using the gradient method (c) and Poisson’s iterative solution (d). Units of the contour lines are

[m?/s?].
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Table 3.2. Statistics for the differences of the
gradient and iterative solution for the
downward continuation with respect to the
original disturbing potential.

Differencesof  Mean Stddev  Min Max
original field ~ [m¥s*] Hm¥s%] [m¥sY) [m%s?)
Down cont
(gradient method)  0.60 0.48 -0.74 2.16
Down cont
(iterative method) -0.09 0.24 -0.88 0.57

5. CONCLUSION

For the downward continuation of the dis-
turbing potential we observe that Poisson’s integral
iterative solution performs better than the gradient
method in terms of standard deviations. Mean
differences on the order of 1 cm with standard
deviations of 2 ¢m in terms of geoid undulations
can be observed in the simulations when using this
method. Therefore, is recommended for the deter-
mination of the disturbing potential at terrain and
boundary surface level.
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