Physical, chemical, and biological treatment of chemical waste from teaching laboratories at Universidad Nacional, Costa Rica

Keywords: Aspergillus sp., Penicillium dipodomyicola, mass chromatography, toxicity, Daphnia magna, chemical wastewater, biological treatment


Herein, we report the physical, chemical, and biological treatment of wastewater generated in the teaching laboratories at Universidad Nacional, Costa Rica. Initial physicochemical treatment included neutralization and coagulation-flocculation, followed by a biological treatment with fungi (Aspergillus sp. and Penicillium dipodomyicola) or bacterias, the latter were isolated from the sludge from the campus’ wastewater treatment plant and the greywater collection tank at the School of Chemistry. The samples’ pH prior to treatment was ≤ 2, while COD ranged between 3000 and 30 000 mg/L. Gas chromatography-mass spectra analysis indicated the presence of 55 organic compounds in the wastewater, some of which reached undetectable concentrations after treatment. The fungi and the bacterial strain removed up to 50% of the substances, while the toxicity decreased with respect to time of exposure to the treatment. Results support the potential use of these microorganisms as bioremediators. Although the organic compounds were partially removed, the treated wastewater exhibited high toxicity for Daphnia magna (water flea). Further experiments with longer treatment times or other strains might be needed for effective removal of pollutants.


Aguilar, M.; Sáenz, J.; Llórens, M.; Soler, A. y Ortuño, J. (2002). Tratamiento físico-químico de aguas residuales, Coagulación floculación. Murcia, España. Universidad de Murcia, España.
Altschul, S. F.; Gish, W.; Miller, W.; Myers, E.W. y Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol., 215(3), 403-410.
American Public Health Association. (2005). Standard Methods for the Examination of Water and Wastewater, 21 (21). Washington, D. C, EE. UU. American Public Health Association.
Arroyo, N. (2016.). La composición de los residuos de laboratorios es variable porque depende de las actividades de los cursos que se imparten y de los proyectos de investigación en ejecución. (Licentiate degree Thesis). Universidad de Costa Rica, Costa Rica.
AyA y MINAE. (2017). MS. Política Nacional de Saneamiento de Aguas Residuales, 1st. ed.; San José, Costa Rica, AyA-MINAE-MS.
Bertini, L. M. y Cicerone, D. (2009). Fomento e innovación con nuevas tecnologías en la docencia de la ingeniería FINTDI 2009. IEEE-RITA, 5(1), 13-14.
Bosso, L. y Cristinzio, G. (2014). A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Reviews in Environmental Science and Biotechnology, 13(4), 387-427.
Carrillo, L. (2003). Manejo y tratamiento de residuos químicos en el Laboratorio de Química General de la Universidad Simón Bolívar. Rev. Inves. Universitaria Multidisciplinaria, 1-7.
de Souza E. y Tenuta, A. (2010). Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions. Brazilian Journal of Pharmaceutical Sciences, 2(46), 187-197.
Díaz, M. (2018). Ecuaciones y Cálculos para el Tratamiento de Aguas. Madrid, Spain. Liberdigital, S.L.
EPS. (1990). Canadian Cataloguing in Publication Data. Montreal, Canada. Environmental Protection Series.
Fritsche, W. y Hofrichter, M. (2008). Aerobic Degradation by Microorganisms. Biotechnology: Second, Completely Revised Edition, 11-12, 144-167.
Fúquene, D. y Yate, A. (2018). Ensayo de jarras para el control del proceso de coagulación en el tratamiento de aguas residuales industriales. Working papers, ECAPMA, 2, 1.
Gami, A. A.; Shukor, M. Y.; Khalil, K. A.; Dahalan, F. A., Khalid, A. y Ahmad, S. A. (2014). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology. J. Environ. Microbiol. Tox., 2 (1), 11-24.
Geneious (9.1.8)
Ghosal, D.; Ghosh, S.; Dutta, T. K. y Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front. Microbiol, 7, 1369.
Gulzar, T.; Huma, T.; Jalal, F.; Iqbal, S.; Abrar, S.; Kiran, S. y Rafique, M. A. (2017). Bioremediation of Synthetic and Industrial Effluents by Aspergillus niger Isolated from Contaminated Soil Following a Sequential Strategy. Molecules (Basel, Switzerland), 22(12), 2244.
Houbron, E.; Zepeda, A.; Sánchez, L. y Rustrían, E. (2002). Tratamiento integral de aguas residuales de cervecería usando un reactor secuencial discontinuo. Información tecnológica, 13(3), 9-12.
Jurkovic, L. y Simonovicova, A. (2013). Potential of Aspergillus niger in bioremediation of contaminated soils. Paper presented in Ecology and Environmental Protection, June 2013.
Kim, J. D. y Lee, C. G. (2007). Microbial degradation of polycyclic aromatic hydrocarbons in soils by bacterium-fungus co-cultures. Biotechnology and Bioprocess Engineering, 12(4), 410-416.
Leitão, A. L. (2009). Potential of penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, 6(4), 1393-1417.
López, C.; Buitrón, G.; García, H. y Cervantes, F. (2017). Tratamiento biológico de aguas residuales: principios, modelación y diseño. Londres. IWA Publishing.
Lopez, J. y Martin, S. (2015). Depuración de aguas residuales. Madrid, España. Editorial Elearning.
López, S. y Marín, S. (2017). UF1666-Depuración de Aguas Residuales. Madrid, Spain. Editorial Elearning, S. L.
Manahan, S. (2007). Introducción a la Química Ambiental. Barcelona, Spain. Editorial REVERTÉ, S.A.
Meckenstock, R. U.; Morasch, B.; Kästner, M.; Vieth, A. y Richnow, H. H. (2002). Assessment of bacterial degradation of aromatic hydrocarbons in the environment by analysis of stable carbon isotope fractionation due to steadily increasing problems with contamination of groundwater by organic pollutants such as mineral oil products. Water, Air, & Soil Pollution, 2.3, 141-152.
Meerbergen, K.; Willems, K. A.; Dewil, R.; Van Impe, J.; Appels, L. y Lievens, B. (2018). Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. Journal of Bioscience and Bioengineering, 125(4), 448-456.
Mukherjee, A. (2016). Role of Aspergillus in Bioremediation Process. New and Future Developments in Microbial Biotechnology and Bioengineering, 209-214.
Murínová, S. y Dercová, K. (2013). Bacterial cell membrane adaptation responses on stress caused with the environmental pollutants. Acta Chimica Slovaca, 6(1), 106-114.
Musa, Z. J.; Bhattacharya, A. y Bandela, N. N. (2017). Biological removal of phenol from wastewater using a bacterial biofilm. Int. J. Recent Scient. Res., 8(12), 22674-22676.
Nielsen, M. B.; Kjeldsen, K. U., Lever, M. A. y Ingvorsen, K. (2014). Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis. Ecotoxicology, 23(3), 404-418.
Ruiz, F. (2012). Gestión de las Excretas y Aguas Residuales en Costa Rica, Situación Actual y Perspectiva. San José, Costa Rica. Instituto de acueductos y alcantarillados, Costa Rica.
Sakthipriya, N.; Doble, M. y Sangwai, J. S. (2015). Bioremediation of Coastal and Marine Pollution due to Crude Oil Using a Microorganism Bacillus subtilis. Procedia Engineering, 116, 213-220.
Saleem, M.; Ahmad, S. y Ahmad, M. (2014). Potential of Bacillus cereus for bioremediation of pulp and paper industrial waste. Annals of Microbiology, 64(2), 823-829.
Sambrook, Joseph. & Russell, David W. & Cold Spring Harbor Laboratory (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory
Sanders, E. R. (2012). Aseptic Laboratory Techniques: Plating Methods. Journal of Visualized Experiments, (63), 1-18.
Stewart Jr, C. N. (1997). Rapid DNA extraction from plants. In M. R. Micheli y R. Bova (Eds.), Fingerprinting Methods Based on Arbitrarily Primed PCR, 25-28. Springer Lab Manuals: Berlin, Heidelberg.
Suhett, A. L.; Magalhães Santangelo, J.; Luiz Bozell, R.; Steinberg, C.; Fortes Farjalla, V. (2015). An overview of the contribution of studies with cladocerans to environmental stress research. Acta Limnol. Brasiliensia, 27(2), 145-159.
Triffault-Bouchet, G.; Clément, B. y Blake, G. (2005). Assessment of contaminated sediments with an indoor freshwater/sediment microcosm assay. Environmental Toxicology and Chemistry, 24(9), 2243-2253.
Vainillina 7887. (2015). Ficha de datos de seguridad. (Online); Carl Roth: Karlsruhe, Germany, Aug. 28, 2015 (mod April 29, 2019).
Valverde, T.; Meave, J.; Carabias, J. y Cano, Z. (2005). Ecología y medio ambiente. México. Pearson Education.
Visser, S. A.; Lamontagne, G.; Zoulalian, V. y Tessier, A. (1977). Bacteria active in the degradation of phenols in polluted waters of the St. Lawrence River. Archives of Environmental Contamination and Toxicology, 6(1), 455-469.
Wassie, Abatenh, E.; Gizaw, B.; Tsegaye, Z. y Wassie, M. (2017). Application of microorganisms in bioremediation-review. Journal of Environmental Microbiology, 1(1).
White, T. J.; Bruns, T.; Lee, S. y Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D.H., Gelfand, J. J., Sninsky y T.J. White (Eds.), PCR protocols-a guide to methods and applications, 315-322. San Diego, California: Academic Press.
Wiesel, I.; Wübker, S. M. y Rehm, H. J. (1993). Degradation of polycyclic aromatic hydrocarbons by an immobilized mixed bacterial culture. Applied Microbiology and Biotechnology, 39(1), 110-116.
Wiesmann, U.; Choi, I. S. y Dombrowski, E.-M. (2007). Fundamentals of biological wastewater treatment. Weinheim, London, Wiley-VCH.
How to Cite
Rodríguez-Rodríguez, J., Vargas-Villalobos, S., Aparicio-Mora, C., Nova-Bustos, N., & Pinnock-Branford, M. (2020). Physical, chemical, and biological treatment of chemical waste from teaching laboratories at Universidad Nacional, Costa Rica. Uniciencia, 34(2), 82-94.
Original scientific papers (evaluated by academic peers)