Evaluation of the development of infective structures and the effect of Beauveria bassiana on the growth of tomato seedlings (Solanum lycopersicum) under high-temperature conditions

Authors

DOI:

https://doi.org/10.15359/ru.39-1.2

Keywords:

Thermo-tolerance, entomopathogenic fungi, biologic control, growth promoter, physiological stress

Abstract

[Objective] The paper aimed to evaluate in vitro development of infective structures of Beauveria spp. strains and their effect on the growth of tomato seedlings (Solanum lycopersicum) under high-temperature conditions. [Methodology] The development of five strains was compared under both optimal and high-temperature conditions (up to 35°C) regarding the production of conidia, mycelium growth, and germination. Subsequently, the effect of the strain with the highest yield on the growth of seedlings of S. lycopersicum, cultivar 'Gladiator', was assessed under the same temperature conditions. Furthermore, each strain was identified using PCR amplification of the nuclear intergenic region Bloc and elongation factor EF1-α. [Results] Strains were identified as Beauveria bassiana of neotropical lineage. No significant differences were found in the conidia production between treatments (p-value > 0.05), as opposed to mycelial growth. Minor but significant changes were observed in root-to-surface ratios but not in any other evaluated variables, and only for seedlings treated with strain H-31. [Conclusions] The entomopathogenic potential of B. bassiana was determined under environmental stress conditions, such as high temperatures typical of tropical climates. This study also lays the groundwork for the bioprospecting of thermotolerant microorganisms with agrobiotechnological potential in global warming scenarios.

References

Abdulhai, M., El-Bouhssi, M., Jamal, M., Trissi, A. N., Sayyadi, Z., Skinner, M. y Parker, B. L. (2010). Beauveria bassiana Characterization and Efficacy vs. Sunn Pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pakistan Journal of Biological Sciences, 13(21), 1052-1056. https://doi.org/10.3923/pjbs.2010.1052.1056

Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., al Azmeh, F. y Montagna, M. (2019). Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLOS ONE, 14(2), e0211457. https://doi.org/10.1371/journal.pone.0211457

Barra-Bucarei, L., France Iglesias, A., Gerding González, M., Silva Aguayo, G., Carrasco-Fernández, J., Castro, J. F. y Ortiz Campos, J. (2019). Antifungal Activity of Beauveria bassiana Endophyte against Botrytis cinerea in Two Solanaceae Crops. Microorganisms, 8(1), 65. https://doi.org/10.3390/microorganisms8010065

Biswas, C., Dey, P., Satpathy, S. y Satya, P. (2011). Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker. BioControl, 57(4), 565-571. https://doi.org/10.1007/s10526-011-9424-0

Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D. y Mittelstet, A. R. (2020). Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments. Water, 12(12), 3388. https://doi.org/10.3390/w12123388

Brownbridge, M., Reay, S. D., Nelson, T. L. y Glare, T. R. (2012). Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 61(3), 194-200. https://doi.org/10.1016/j.biocontrol.2012.01.002

Castro-Vásquez, R. M., Molina-Bravo, R., Hernández-Villalobos, S., Vargas-Martínez, A., González-Herrera, A. y Montero-Astúa, M. (2021). Identification and phylogenetic analysis of a collection of Beauveria spp. Isolates from Central America and Puerto Rico. Journal of Invertebrate Pathology, 184, 107642. https://doi.org/10.1016/j.jip.2021.107642

Ciccillo, F., Fiore, A., Bevivino, A., Dalmastri, C., Tabacchioni, S. y Chiarini, L. (2002). Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology, 4(4), 238-245. https://doi.org/10.1046/j.1462-2920.2002.00291.x

Costa, T. P. C., Rodrigues, E. M., Dias, L. P., Pupin, B., Ferreira, P. C. y Rangel, D. E. N. (2021). Different wavelengths of visible light influence the conidial production and tolerance to ultra-violet radiation of the plant pathogens Colletotrichum acutatum and Fusarium fujikuroi. European Journal of Plant Pathology, 159(1), 105-115. https://doi.org/10.1007/s10658-020-02146-y

Faria, M. R. de y Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001

Fernández, É. K. K. y Bittencourt, V. R. E. P. (2008). Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, 46(1-4), 71-93. https://doi.org/10.1007/s10493-008-9161-y

Fernández, É. K. K., Rangel, D. E. N., Moraes, Á. M. L., Bittencourt, V. R. E. P. y Roberts, D. W. (2008). Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98(1), 69-78. https://doi.org/10.1016/j.jip.2007.10.011

Furuie, J. L., Stuart, A. K. da C., Voidaleski, M. F., Zawadneak, M. A. C. y Pimentel, I. C. (2022). Isolation of Beauveria Strains and Their Potential as Control Agents for Lema bilineata Germar (Coleoptera: Chrysomelidae). Insects, 13(1), 93. https://doi.org/10.3390/insects13010093

Gerónimo-Torres, J. D. C., Torres-de-La-Cruz, M., Pérez-de-La Cruz, M., De-La-Cruz-Pérez, A., Ortiz-García, C. F. y Cappello-García, S. (2016). Caracterización de aislamientos nativos de Beauveria bassiana y su patogenicidad hacia Hypothenemus hampei, en Tabasco, México. Revista Colombiana de Entomología, 42(1), 28. https://doi.org/10.25100/socolen.v42i1.6666

Hiromori, H., Yaginuma, D., Kajino, K. y Hatsukade, M. (2004). The effects of temperature on the insecticidal activity of Beauveria amorpha to Heptophylla picea. Applied Entomology and Zoology, 39(3), 389-392. https://doi.org/10.1303/aez.2004.389

Hoyos-Carvajal, L., Chaparro, P., Abramsky, M., Chet, I. y Orduz, S. (2008). Evaluation of Trichoderma spp. isolates against Rhizoctonia solani and Sclerotium rolfsii under in vitro and greenhouse conditions. Agronomonía Colombiana, 26(3), 451-458. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652008000300010&nrm=iso

Koenraadt, C. J. M. y Takken, W. (2011). Viability of GM Fungi Crucial to Malaria Control. Science, 332(6026), 175. https://doi.org/10.1126/science.332.6026.175

Kuzhuppillymyal-Prabhakarankutty, L., Tamez-Guerra, P., Gomez-Flores, R., Rodriguez-Padilla, M. C. y Ek-Ramos, M. J. (2020). Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World Journal of Microbiology and Biotechnology, 36(47). https://doi.org/10.1007/s11274-020-02823-4

Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M. y der Lelie, D. van. (2002). Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21(6), 583-606. https://doi.org/10.1080/0735-260291044377

Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A. y Poulas, K. (2021). Beauveria bassiana Endophytic Strain as Plant Growth Promoter: The Case of the Grape Vine Vitis vinifera. Journal of Fungi, 7(2), 142. https://doi.org/10.3390/jof7020142

Mishra, A., Singh, S. P., Mahfooz, S., Bhattacharya, A., Mishra, N., Shirke, P. A. y Nautiyal, C. S. (2018). Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological Research, 212–213, 17-28. https://doi.org/10.1016/j.micres.2018.04.006

Mwamburi, L. A., Laing, M. D. y Miller, R. M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67-74. https://doi.org/10.1590/S1517-838246120131077

Naqqash, M. N., Gökçe, A., Bakhsh, A. y Salim, M. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research, 115(4), 1363-1373. https://doi.org/10.1007/s00436-015-4898-9

Ortiz-Urquiza, A., Luo, Z. y Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99(3), 1057-1068. https://doi.org/10.1007/s00253-014-6270-x

Pachoute, J., Nascimento, V. L. y de Souza, D. J. (2021). Beauveria bassiana Enhances the Growth of Cowpea Plants and Increases the Mortality of Cerotoma arcuata. Current Microbiology, 78(10), 3762-3769. https://doi.org/10.1007/s00284-021-02638-y

Posada, F. y Vega, F. E. (2005). Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97(6), 1195-1200. https://doi.org/10.1080/15572536.2006.11832729

Raya-Díaz, S., Sánchez-Rodríguez, A. R., Segura-Fernández, J. M., del Campillo, M. del C. y Quesada-Moraga, E. (2017). Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLOS ONE, 12(10), e0185903. https://doi.org/10.1371/journal.pone.0185903

RCoreTeam. (2021). R: A language and environment for statistical computing (R version 4.1.0) [Computer software]. Statistical Software. https://www.r-project.org/

Rehner, S. A., Posada, F., Buckley, E. P., Infante, F., Castillo, A. y Vega, F. E. (2006). Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. Journal of Invertebrate Pathology, 93(1), 11-21. https://doi.org/10.1016/j.jip.2006.04.005

Rehner, Stephen A. y Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1), 84-98. https://doi.org/10.1080/15572536.2006.11832842

Richardson, E. B., Troczka, B. J., Gutbrod, O., Davies, T. G. E. y Nauen, R. (2020). Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 93, 911-928. https://doi.org/10.1007/s10340-020-01220-y

Russo, M. L., Scorsetti, A. C., Vianna, M. F., Cabello, M., Ferreri, N. y Pelizza, S. (2019). Endophytic Effects of Beauveria bassiana on Corn (Zea mays) and Its Herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects, 10(4), 110. https://doi.org/10.3390/insects10040110

Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M. C., Vitale, S., Turrà, D., Harizanova, V., Lorito, M. y Woo, S. L. (2021). Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 10(10), 1242. https://doi.org/10.3390/pathogens10101242

Sturz, A. y Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15(2), 183-190. https://doi.org/10.1016/S0929-1393(00)00094-9

Tall, S. y Meyling, N. V. (2018). Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability. Microbial Ecology, 76(4), 1002-1008. https://doi.org/10.1007/s00248-018-1180-6

Umetsu, N. y Shirai, Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2), 54-74. https://doi.org/10.1584/jpestics.D20-201

Vidal, C. y Fargues, J. (2007). Climatic constraints for fungal bioinsecticides. En S. Ekesi y N. K. Maniania (Eds.), Use of entomopathogenic fungi in biological pest management (pp. 39-55). Research Signpost.

Wang, J., Chen, J., Hu, Y., Ying, S.-H. y Feng, M.-G. (2020). Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genetics and Biology, 144, 103437. https://doi.org/10.1016/j.fgb.2020.103437

Xie, X.-Q., Wang, J., Huang, B.-F., Ying, S.-H. y Feng, M.-G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotechnology, 86(5), 15431553. https://doi.org/10.1007/s00253-010-2437-2

Zeina, G. W., Ahmed, M., Saeed, M., Ziena, L. y Laing, M. (2022). Field evaluation of Beauveria bassiana (Balsamo) Vuillemin isolates for the biocontrol of Rhipicephalus microplus (Canestrini) ticks on cattle. Experimental Parasitology, 235, 108215. https://doi.org/10.1016/j.exppara.2022.108215

Zhang, L., Fasoyin, O. E., Molnár, I. y Xu, Y. (2020). Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Natural Product Reports, 37(9), 1181-1206. https://doi.org/10.1039/C9NP00065H

Published

2025-01-31

Issue

Section

Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)