Evaluation of the development of infective structures and the effect of Beauveria bassiana on the growth of tomato seedlings (Solanum lycopersicum) under high-temperature conditions
DOI:
https://doi.org/10.15359/ru.39-1.2Keywords:
Thermo-tolerance, entomopathogenic fungi, biologic control, growth promoter, physiological stressAbstract
[Objective] The paper aimed to evaluate in vitro development of infective structures of Beauveria spp. strains and their effect on the growth of tomato seedlings (Solanum lycopersicum) under high-temperature conditions. [Methodology] The development of five strains was compared under both optimal and high-temperature conditions (up to 35°C) regarding the production of conidia, mycelium growth, and germination. Subsequently, the effect of the strain with the highest yield on the growth of seedlings of S. lycopersicum, cultivar 'Gladiator', was assessed under the same temperature conditions. Furthermore, each strain was identified using PCR amplification of the nuclear intergenic region Bloc and elongation factor EF1-α. [Results] Strains were identified as Beauveria bassiana of neotropical lineage. No significant differences were found in the conidia production between treatments (p-value > 0.05), as opposed to mycelial growth. Minor but significant changes were observed in root-to-surface ratios but not in any other evaluated variables, and only for seedlings treated with strain H-31. [Conclusions] The entomopathogenic potential of B. bassiana was determined under environmental stress conditions, such as high temperatures typical of tropical climates. This study also lays the groundwork for the bioprospecting of thermotolerant microorganisms with agrobiotechnological potential in global warming scenarios.
References
Abdulhai, M., El-Bouhssi, M., Jamal, M., Trissi, A. N., Sayyadi, Z., Skinner, M. y Parker, B. L. (2010). Beauveria bassiana Characterization and Efficacy vs. Sunn Pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Pakistan Journal of Biological Sciences, 13(21), 1052-1056. https://doi.org/10.3923/pjbs.2010.1052.1056
Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., al Azmeh, F. y Montagna, M. (2019). Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLOS ONE, 14(2), e0211457. https://doi.org/10.1371/journal.pone.0211457
Barra-Bucarei, L., France Iglesias, A., Gerding González, M., Silva Aguayo, G., Carrasco-Fernández, J., Castro, J. F. y Ortiz Campos, J. (2019). Antifungal Activity of Beauveria bassiana Endophyte against Botrytis cinerea in Two Solanaceae Crops. Microorganisms, 8(1), 65. https://doi.org/10.3390/microorganisms8010065
Biswas, C., Dey, P., Satpathy, S. y Satya, P. (2011). Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker. BioControl, 57(4), 565-571. https://doi.org/10.1007/s10526-011-9424-0
Borsuah, J. F., Messer, T. L., Snow, D. D., Comfort, S. D. y Mittelstet, A. R. (2020). Literature Review: Global Neonicotinoid Insecticide Occurrence in Aquatic Environments. Water, 12(12), 3388. https://doi.org/10.3390/w12123388
Brownbridge, M., Reay, S. D., Nelson, T. L. y Glare, T. R. (2012). Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 61(3), 194-200. https://doi.org/10.1016/j.biocontrol.2012.01.002
Castro-Vásquez, R. M., Molina-Bravo, R., Hernández-Villalobos, S., Vargas-Martínez, A., González-Herrera, A. y Montero-Astúa, M. (2021). Identification and phylogenetic analysis of a collection of Beauveria spp. Isolates from Central America and Puerto Rico. Journal of Invertebrate Pathology, 184, 107642. https://doi.org/10.1016/j.jip.2021.107642
Ciccillo, F., Fiore, A., Bevivino, A., Dalmastri, C., Tabacchioni, S. y Chiarini, L. (2002). Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology, 4(4), 238-245. https://doi.org/10.1046/j.1462-2920.2002.00291.x
Costa, T. P. C., Rodrigues, E. M., Dias, L. P., Pupin, B., Ferreira, P. C. y Rangel, D. E. N. (2021). Different wavelengths of visible light influence the conidial production and tolerance to ultra-violet radiation of the plant pathogens Colletotrichum acutatum and Fusarium fujikuroi. European Journal of Plant Pathology, 159(1), 105-115. https://doi.org/10.1007/s10658-020-02146-y
Faria, M. R. de y Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43(3), 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001
Fernández, É. K. K. y Bittencourt, V. R. E. P. (2008). Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, 46(1-4), 71-93. https://doi.org/10.1007/s10493-008-9161-y
Fernández, É. K. K., Rangel, D. E. N., Moraes, Á. M. L., Bittencourt, V. R. E. P. y Roberts, D. W. (2008). Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, 98(1), 69-78. https://doi.org/10.1016/j.jip.2007.10.011
Furuie, J. L., Stuart, A. K. da C., Voidaleski, M. F., Zawadneak, M. A. C. y Pimentel, I. C. (2022). Isolation of Beauveria Strains and Their Potential as Control Agents for Lema bilineata Germar (Coleoptera: Chrysomelidae). Insects, 13(1), 93. https://doi.org/10.3390/insects13010093
Gerónimo-Torres, J. D. C., Torres-de-La-Cruz, M., Pérez-de-La Cruz, M., De-La-Cruz-Pérez, A., Ortiz-García, C. F. y Cappello-García, S. (2016). Caracterización de aislamientos nativos de Beauveria bassiana y su patogenicidad hacia Hypothenemus hampei, en Tabasco, México. Revista Colombiana de Entomología, 42(1), 28. https://doi.org/10.25100/socolen.v42i1.6666
Hiromori, H., Yaginuma, D., Kajino, K. y Hatsukade, M. (2004). The effects of temperature on the insecticidal activity of Beauveria amorpha to Heptophylla picea. Applied Entomology and Zoology, 39(3), 389-392. https://doi.org/10.1303/aez.2004.389
Hoyos-Carvajal, L., Chaparro, P., Abramsky, M., Chet, I. y Orduz, S. (2008). Evaluation of Trichoderma spp. isolates against Rhizoctonia solani and Sclerotium rolfsii under in vitro and greenhouse conditions. Agronomonía Colombiana, 26(3), 451-458. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652008000300010&nrm=iso
Koenraadt, C. J. M. y Takken, W. (2011). Viability of GM Fungi Crucial to Malaria Control. Science, 332(6026), 175. https://doi.org/10.1126/science.332.6026.175
Kuzhuppillymyal-Prabhakarankutty, L., Tamez-Guerra, P., Gomez-Flores, R., Rodriguez-Padilla, M. C. y Ek-Ramos, M. J. (2020). Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn. World Journal of Microbiology and Biotechnology, 36(47). https://doi.org/10.1007/s11274-020-02823-4
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M. y der Lelie, D. van. (2002). Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21(6), 583-606. https://doi.org/10.1080/0735-260291044377
Mantzoukas, S., Lagogiannis, I., Mpousia, D., Ntoukas, A., Karmakolia, K., Eliopoulos, P. A. y Poulas, K. (2021). Beauveria bassiana Endophytic Strain as Plant Growth Promoter: The Case of the Grape Vine Vitis vinifera. Journal of Fungi, 7(2), 142. https://doi.org/10.3390/jof7020142
Mishra, A., Singh, S. P., Mahfooz, S., Bhattacharya, A., Mishra, N., Shirke, P. A. y Nautiyal, C. S. (2018). Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiological Research, 212–213, 17-28. https://doi.org/10.1016/j.micres.2018.04.006
Mwamburi, L. A., Laing, M. D. y Miller, R. M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46(1), 67-74. https://doi.org/10.1590/S1517-838246120131077
Naqqash, M. N., Gökçe, A., Bakhsh, A. y Salim, M. (2016). Insecticide resistance and its molecular basis in urban insect pests. Parasitology Research, 115(4), 1363-1373. https://doi.org/10.1007/s00436-015-4898-9
Ortiz-Urquiza, A., Luo, Z. y Keyhani, N. O. (2015). Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 99(3), 1057-1068. https://doi.org/10.1007/s00253-014-6270-x
Pachoute, J., Nascimento, V. L. y de Souza, D. J. (2021). Beauveria bassiana Enhances the Growth of Cowpea Plants and Increases the Mortality of Cerotoma arcuata. Current Microbiology, 78(10), 3762-3769. https://doi.org/10.1007/s00284-021-02638-y
Posada, F. y Vega, F. E. (2005). Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97(6), 1195-1200. https://doi.org/10.1080/15572536.2006.11832729
Raya-Díaz, S., Sánchez-Rodríguez, A. R., Segura-Fernández, J. M., del Campillo, M. del C. y Quesada-Moraga, E. (2017). Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLOS ONE, 12(10), e0185903. https://doi.org/10.1371/journal.pone.0185903
RCoreTeam. (2021). R: A language and environment for statistical computing (R version 4.1.0) [Computer software]. Statistical Software. https://www.r-project.org/
Rehner, S. A., Posada, F., Buckley, E. P., Infante, F., Castillo, A. y Vega, F. E. (2006). Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. Journal of Invertebrate Pathology, 93(1), 11-21. https://doi.org/10.1016/j.jip.2006.04.005
Rehner, Stephen A. y Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97(1), 84-98. https://doi.org/10.1080/15572536.2006.11832842
Richardson, E. B., Troczka, B. J., Gutbrod, O., Davies, T. G. E. y Nauen, R. (2020). Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science, 93, 911-928. https://doi.org/10.1007/s10340-020-01220-y
Russo, M. L., Scorsetti, A. C., Vianna, M. F., Cabello, M., Ferreri, N. y Pelizza, S. (2019). Endophytic Effects of Beauveria bassiana on Corn (Zea mays) and Its Herbivore, Rachiplusia nu (Lepidoptera: Noctuidae). Insects, 10(4), 110. https://doi.org/10.3390/insects10040110
Sinno, M., Ranesi, M., Di Lelio, I., Iacomino, G., Becchimanzi, A., Barra, E., Molisso, D., Pennacchio, F., Digilio, M. C., Vitale, S., Turrà, D., Harizanova, V., Lorito, M. y Woo, S. L. (2021). Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 10(10), 1242. https://doi.org/10.3390/pathogens10101242
Sturz, A. y Nowak, J. (2000). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Applied Soil Ecology, 15(2), 183-190. https://doi.org/10.1016/S0929-1393(00)00094-9
Tall, S. y Meyling, N. V. (2018). Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability. Microbial Ecology, 76(4), 1002-1008. https://doi.org/10.1007/s00248-018-1180-6
Umetsu, N. y Shirai, Y. (2020). Development of novel pesticides in the 21st century. Journal of Pesticide Science, 45(2), 54-74. https://doi.org/10.1584/jpestics.D20-201
Vidal, C. y Fargues, J. (2007). Climatic constraints for fungal bioinsecticides. En S. Ekesi y N. K. Maniania (Eds.), Use of entomopathogenic fungi in biological pest management (pp. 39-55). Research Signpost.
Wang, J., Chen, J., Hu, Y., Ying, S.-H. y Feng, M.-G. (2020). Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genetics and Biology, 144, 103437. https://doi.org/10.1016/j.fgb.2020.103437
Xie, X.-Q., Wang, J., Huang, B.-F., Ying, S.-H. y Feng, M.-G. (2010). A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotechnology, 86(5), 15431553. https://doi.org/10.1007/s00253-010-2437-2
Zeina, G. W., Ahmed, M., Saeed, M., Ziena, L. y Laing, M. (2022). Field evaluation of Beauveria bassiana (Balsamo) Vuillemin isolates for the biocontrol of Rhipicephalus microplus (Canestrini) ticks on cattle. Experimental Parasitology, 235, 108215. https://doi.org/10.1016/j.exppara.2022.108215
Zhang, L., Fasoyin, O. E., Molnár, I. y Xu, Y. (2020). Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Natural Product Reports, 37(9), 1181-1206. https://doi.org/10.1039/C9NP00065H
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shared by Journal and Authors (CC-BY-NC-ND)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)