The conceptual fields theory and its role in Mathematics Education
DOI:
https://doi.org/10.15359/ru.30-1.2Keywords:
conceptual fields, mathematics education, schemeAbstract
This article refers to the theory of Vergnaud’s conceptual fields and its implications in teaching mathematics. Fundamental concepts of this theory are discussed in light of teaching and learning mathematics; providing specific examples in the discipline and establishing relationship with other related references; for example, Polya problem-solving and Brousseau didactic situations, among others.References
Brousseau, G. (1986). Fondements et méthodes de la didactiques des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33–115. Recuperado de http://cimate.uagro.mx/ivanlopez/seminario/archivos/Brousseau_Fondements.pdf
Chevallard, Y. (1991). La transposición didáctica, Del saber sabio al saber enseñado. Buenos Aires: Aique Grupo Editor.
Murillo, M.; Soto, A.; y Araya, J. (2003). Matemática básica con aplicaciones. San José: Editorial Universidad Estatal a Distancia.
Piaget, J.; Inhelder, B.; Sinclair-de Zwart, H.; Cheret, M.; Revello, A. (1978). Memoria e intelligencia. Buenos Aires: El Alteneo.
Polya, G. (1965). Cómo plantear y resolver problemas. México: Editorial Trillas.
Ruiz, A. (2000). El desafío de las matemáticas. Heredia, Costa Rica: Editorial de la Universidad Nacional.
Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. En Carpenter, T., Moser, J. y Romberg, T. (edits.), Addition and subtraction: A cognitive perspective, pp. 39-59. Hillsdale, N. J.: Lawrence Erlbaum.
Vergnaud, G. (1983). Quelques problèmes theóriques de la didactique a propos d'un example: les structures additives. Atelier International d'Eté: Récherche en Didactique de la Physique. La Londe les Maures, Francia.
Vergnaud. G. (1990). La théorie des champs conceptuels. Récherches en Didactique des Mathématiques, 10(23), 133-170. Recuperado de http://www.fundesuperior.org/Articulos/Pedagogia/Teoria_campos_conceptuales.pdf
Vergnaud, G. (1994). Multiplicative conceptual field: what and why? En H. Guershon y J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics, pp. 41- 59. Albany, N.Y.: State University of New York Press.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)