Análisis de las series de tiempo de variables biofísicas para cuatro ecorregiones de Guanacaste, Costa Rica

Palabras clave: Bioclima; fracción absorbida de la radiación fotosintéticamente activa; Índice de Área Foliar; NDVI.

Resumen

En este trabajo se presenta el análisis del índice de área foliar (LAI) la fracción absorbida de la radiación fotosintéticamente activa (fPAR) y el índice normalizado de vegetación (NDVI) para cuatro ecorregiones en la provincia de Guanacaste. Estas variables biofísicas son elementos esenciales para comprender los procesos fenológicos de los ecosistemas en el marco del cambio climático. Los análisis por ecorregión se basaron en la descomposición de las series de tiempo en tres componentes: estacionalidad, tendencia y residuos. Las series de tiempo se procesaron de los productos de la plataforma del Espectroradiómetro de imágenes de resolución media “ModerateResolutionImagingSpectroradiometer”, “MODIS” y se usó la plataforma EarthEngine con una resolución temporal de 16 días y con un tamaño de píxel de 500 m. Las curvas de tendencia de fPAR, LAI y NDVI son muy similares para las ecorregiones, por lo que para futuros estudios no es necesario analizar las tres variables. Estas muestran una homogeneidad internamente y se diferencian bien unas de otras, sin embargo, tanto los bosques húmedos estacionales como los bosques secos del pacífico, se comportan en forma muy similar en cuanto a los máximos y mínimos con relación a la tendencia. El descomponer las series de tiempo en tendencia y estacionalidad es una buena forma de análisis para realizar monitoreo, relacionar las variables biofísicas y su productividad con otros elementos climáticos, como por ejemplo, el efecto ENOS.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Mauricio Vega-Araya, Universidad Nacional (UNA)
Investigador, Universidad Nacional (UNA), Costa Rica.
Ricardo Alvarado-Barrantes, Universidad de Costa Rica (UCR)
Docente, Universidad de Costa Rica (UCR), Escuela de Estadística. 

Citas

Amthor, J. y Baldocchi, D. (2001). Terrestrial Higher Plant Respiration and Net Primary Production. Terrestrial Global Productivity, 33-59. https://doi.org/10.1016/b978-012505290-0/50004-1

Asner, G. P., Scurlock, J. M. O., y A. Hicke, J. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3), 191-205. https://doi.org/10.1046/j.1466-822X.2003.00026.x

Baldocchi, D. D. y Wilson, K. B. (2001). Modeling CO2 y water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142(1), 155-184. https://doi.org/10.1016/s0304-3800(01)00287-3

Bicheron, P. (1999). A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model. Remote Sensing of Environment, 67, 251-266. https://doi.org/10.1016/S0034-4257(98)00083-2.

Blumel, B. y Reimer, E. (2009). Validation of boundary layer parameters of climate model REMO: estimation of leaf area index from NOAA-AVHRR data for the Baltimos region. Theoretical and Applied Climatology, 98, 1-11. https://doi.org/10.1007/s00704-009-0164-3

Bonan, G. (2016). Ecological Climatology. Concepts and Applications. Cambridge University Press, 3rd edition edition. https://doi.org/10.1017/CBO9780511805530

Box, G. E. P. y Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressiveintegrated moving average time series models. Journal of the American Statistical Association, 65(332), 1509-1526. https://doi.org/10.2307/2284333

Brockwell, P. J. y Davis, R. A. (2002). Introduction to time series and forecasting. Springer- Verlag, New York.

Brown, L., Chen, J., Leblanc, S., y Cihlar, J. (2000). Shortwave infrared correction to the simple ratio: An image and model analysis. Remote Sens. Environ, 77, 16-25. https://doi.org/10.1016/S0034-4257(99)00035-8

Brown, M. E., Pinzon, J. E., Didan, K., Morisette, J. T., y Tucker, C. J. (2006). Evaluation of the consistency of long-term NDVI time series derived from AVHRR, Spot-Vegetation, Seawifs, MODIS, and Landsat ETM+ sensors. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1787-1793. https://doi.org/10.1109/TGRS.2005.860205

Chen, J. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242. https://doi.org/10.1080/07038992.1996.10855178

Chen, J., Liu, J., Cihlar, J., y Goulden, M. (1999). Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological Modelling, 124(2):99-119. https://doi.org/10.1016/S0304-3800(99)00156-8

Chen, P. Y., Fedosejevs, G., Tiscareno-LoPez, M., y Arnold, J. G. (2006). Assessment of MODIS-EVI, MODIS-NDVI and Vegetation-ndvi composite data using agricultural measurements: An example at corn fields in western Mexico. Environmental Monitoring and Assessment, 119(1), 69-82. DOI: https://doi.org/10.1007/s10661-005-9006-7

Choudhury, B. J. (1987). Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Remote Sensing of Environment, 22(2), 209-233. https://doi.org/10.1016/0034-4257(87)90059-9

Cleveland, R., Cleveland, W., McRae, J., y Terpenning, I. (1990). STL: A seasonal-trend decomposition procedure based on loess (with discussion). Journal of Official Statistics, 6(1), 3-73.

CONIFOR. (2014). Estrategia nacional de manejo integral del fuego en Costa Rica 2012-2021. Technical report, Comision Nacional sobre Incendios Forestales CONIFOR, SINAC.

Davis, J. (2003). Statistics and Data analysis in Geology, John Wiley and Sons.

Didan, K. (2015). Mod13q1 modis/terra vegetation indices 16-day l3 global 250m sin grid v006.. Technical report, NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod13q1.006.

Eklundh, L., Harrie, L., y Kuusk, A. (2001). Investigating relationships between lysat etm+ sensor data and leaf area index in a boreal conifer forest. Remote Sensing of Environment. https://doi.org/10.1016/S0034-4257(01)00222-X

Fang, H., Liang, S., McClaran, M., Van Leeuwen, W., Drake, S., Marsh, S., Thomson, A., Izaurralde, R., y Rosenberg, N. (2005a). Biophysical characterization and management effects on semiarid rangeland observed from landsat etm+ data. IEEE Transactions on Geoscience and Remote Sensing, 43(1):125-133. https://doi.org/10.1109/tgrs.2004.839813

Fang, H., Liang, S., McClaran, M. P., van Leeuwen, W. J. D., Drake, S., Marsh, S. E., Thomson, A. M., Izaurralde, R. C., y Rosenberg, N. J. (2005b). Biophysical characterization and management effects on semiarid rangeland observed from Landsat ETM+ data. IEEE Transactions on Geoscience and Remote Sensing, 43(1), 125-134. https://doi.org/10.1109/tgrs.2004.839813

Feng, D., Chen, J., Plummer, S., Chen, M., y Pisek, J. (2006). Algorithm for global leaf area index retrieval using satellite imagery. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 44(8). https://doi.org/10.1109/TGRS.2006.872100

Fensholt, R., Sandholt, I., y Schultz Rasmussen, M. (2004). Evaluation of modis lai, fapar and the relation between fapar and ndvi in a semi-arid environment using in situmeasurements. Remote Sensing of Environment, 91, 490-507. https://doi.org/10.1016/j.rse.2004.04.009

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S., y Reichstein, M. (2013). Trend change detection in ndvi time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113-2144. https://doi.org/10.3390/rs5052113

Friedl, M. A., Davis, F. W. Michaelsen, J., y Moritz, M. A. (1995). Scaling and uncertainty in the relationship between the ndvi and land surface biophysical variables: an analysis using a scene simulation model and data from fife. Remote Sensing of Environment, 54, 233- 246. https://doi.org/10.1016/0034-4257(95)00156-5

Fuller, W. A. (1996). Introduction to Statistical Time Series. John Wiley & Sons, Inc. http://dx.doi.org/10.1002/9780470316917

Funk, C., Peterson, P., Landsfeld, M.F., Pedreros, D., Verdin, J.P., Rowland, J., Romero, B., Husak, G., Michaelsen, J., y Verdin, A. (2014). A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, p. 4 http://dx.doi.org/10.3133/ds832

Garrigues, S., Lacaze, R., Baret, F., Morisette, J. T., Weiss, M., Nickeson, J. E., Fernandes, R., Plummer, S., Shabanov, N. V., Myneni, R. B., Knyazikhin, Y., y Yang, W. (2008). Validation and intercomparison of global leaf area index products derived from remote sensing data. Journal of Geophysical Research: Biogeosciences, 113(G2), n/a–n/a. G02028. https://doi.org/10.1029/2007JG000635

Gobron, N. y Verstraete, M. M. (2009). Fraction of absorbed photosynthetically active radiation (fapar): Assessment of the status of the development of the standards for the terrestrial essential climate variables. Technical Report Version 8, Global Terrestrial Observing System-FAO.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., y Moore, R. (2017). Google Earth Engine: Planetary-scale Geospatial Analysis for Everyone. Remote Sensing of Environment, 202 (1), 18-27. https://doi.org/10.1016/j.rse.2017.06.031

Gower, S. T., Krankina, O., Olson, R. J., Apps, M., Linder, S., y Wang, C. (2001). Net primary production and carbon allocation ppattern of boreal forest ecosystems. Ecological Applications, 11(5), 1395–1411. https://doi.org/10.1016/j.rse.2017.06.031

Hobbs, T. J. (1995). The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. International Journal of Remote Sensing, 16(7), 1289-1302. https://doi.org/10.1080/01431169508954477

Hobijn, B., Franses, P. H., y Ooms, M. (1998). Generalizations of the kpss-test for stationarity.Statistica Neerlandica, 58 (4), 483-502. https://doi.org/10.1111/j.1467-9574.2004.00272.x

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., y Ferreira, L. (2002). Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sensing of Environment, 83(1-2):195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

Huete, A., Didan, R., van Leeuwen, W., Miura, T., y Glenn, E. (2008). Modis vegetation indices. in: Land remote sensing and global environmental change: Nasa’s earth observing system and the science of aster and modis. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS. https://doi.org/10.1007/978-1-4419-6749-7_26

Hunt, E. R., Kelly, R. D., Smith, W. K., Fahnestock, J. T., Welker, J. M., y Reiners, W. A. (2004). Estimation of carbon sequestration by combining remote sensing and net ecosystemexchange data for northern mixed-grass prairie and sagebrush–steppe ecosystems. Environmental Management, 33(1): S432-S441. https://doi.org/10.1007/s00267-003-9151-0

Huntington, J., Hegewisch, K., Daudert, B., Morton, C., Abatzoglou, J., McEvoy, D., y Erickson, T. (2017). Climate Engine: Cloud Computing of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Disponible en: https://clim-engine.appspot.com/.X. https://doi.org/10.1175/bams-d-15-00324.1

Hyndman, R. J. y Athanasopoulos, G. (2013). Forecasting: principles and practice. Texts. Disponible en: https://otexts.com/fpp2/

Hyndman, R. J. y Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 26(3), 1-22.

Iwata, H., Ueyama, M., Iwama, C., y Harazono, Y. (2013). Variations in fraction of absorbed photosynthetically active radiation and comparisons with modis data in burned black spruce forests of interior Alaska. Polar Science, 7(2):113 - 124. https://doi.org/10.1016/j.polar.2013.03.004

Jackson, D. R. y Huete, R. A. (1991). Intepreting vegetation indices. Preventive Veterinary Medice, 11:185-200. https://doi.org/10.1016/s0167-5877(05)80004-2

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P., Asner, G., Francois, C., Ustin, S. (2009). Use of prospect+sail to estimate canopy biochemistry at different scales. Remote Sensing of Environment, 113(1), S56-S66. https://doi.org/10.1016/j.rse.2008.01.026

Jacquemoud, S. y Ustin, S. (2003). Application of radiative transfer modes to moisture content estimation and burned land mapping. In Proceedings of the 4th International Workshop on Remote Sensing and GIS applications to Forest Fire management, Innovative concepts and methods in fire danger estimation.

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., y Baret, F. (2004). Review of methods for in situ leaf area index determination part i. theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2), 19-35. https://doi.org/10.1016/j.agrformet.2003.08.027

Kappas, M. W. y Propastin, P. A. (2012). Review of available products of leaf area index and their suitability over the formerly Soviet Central Asia. Journal of Sensors, 2012. https://doi.org/10.1155/2012/582159

Knyazikhin, Y., Martonchik, J. V., Diner, D. J., Myneni, R. B., Verstraete, M., Pinty, B., y Gobron, N. (1998). Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected misr data. Journal of Geophysical Research: Atmospheres, 103(D24), 32239-32256. https://doi.org/10.1029/98jd02461

Kunzer, C., Dech, S., y Wagner, W. (2015). Remote Sensing Time Series: Revealing Land Surface Dynamics. 22. Springer International Publishing. https://doi.org/10.1007/978-3-319-15967-6

Lotsch, A., Tian, Y., Friedl, M. A., y Myneni, R. B. (2003). Land cover mapping in support of LAI and fpar retrievals from eos-modis and misr: Classification methods and sensitivities to errors. International Journal of Remote Sensing, 24(10), 1997-2016. https://doi.org/10.1080/01431160210154858.X

Luyssaert, S., Inglima, I., Jung, M., Richardson, A., Reichstein, M., Papale, D., Piao, S., Schulze, E., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beers, C., Bernhofer, C., Black, G., Bonal, D., Bonnefond, J., Chambers, J., Ciais, P., Cook, B., Davis, K., Dolman, A., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P., Harding, R., Hollinger, D., Hutyra, L.R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateu, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J., Nikinmaa, E., Ollinger, S., Pita, G., Rebmann, C., y Roupsard, O. (2007). CO2 Balance of Boreal, Temperate, and Tropical Forests Derived from a Global Database. Global Change Biology, 13(12), 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x

min WANG, F., feng HUANG, J., lin TANG, Y., y zhen WANG, X. (2007). New vegetation index and its application in estimating leaf area index of rice. Rice Science, 14(3), 195- 203. https://doi.org/10.1016/s1672-6308(07)60027-4

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., batzoglou, J., Wilson, B. E., Breshears, D. D., Henebry, G. M., Hanes, J. M., y Liang, L. (2009). Tracking the Rhythm of the Seasons in the Face of Global Change: Phenological Research in the 21st Century. Frontiers in Ecology and the Environment, 7(5), 253-260. https://doi.org/10.1890/070217

Myneni, R. (2015). Mod15a2h modis/terra leaf area index/fpar 8-day l4 global 500m sin grid v006. Technical report, NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod15a2h.006.

Myneni, R., Hoffman, S., Knyazikhin, Y., Privette, J., Glassy, J., Tian, Y., Wang, Y., Song, X.,Zhang, Y., Smith, G., Lotsch, A., Friedl, M., Morisette, J., Votava, P., Nemani, R., y Running, S. (2001). Global products of vegetation leaf area and fraction absorbed par from year one of modis data. Remote Sensing of Environment, 83, 214-231.

Myneni, R., Maggion, S., Iaquinta, J., Privette, J., Gobron, N., Pinty, B., Kimes, D., Verstraete, M., y Williams, D. (1995). Optical remote sensing of vegetation: Modeling, caveats, and algorithms. Remote Sensing of Environment, 51(1), 169-188. Remote Sensing of Land Surface for Studies of Global Chage. https://doi.org/10.1016/0034-4257(94)00073-v

Myneni, R., Ramakrishna, R., Ramakrishna, N., y Running, S. (1997). Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing 35(6):1380-1393. https://doi.org/10.1109/36.649788

Olson, D., & Dinerstein, E. (2002). The Global 200: Priority Ecoregions for Global Conservation. Annals of the Missouri Botanical Garden, 89(2), 199-224. https://doi.org/10.2307/3298564

Phillips, P. C. B. y Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346. https://doi.org/10.1093/biomet/75.2.335

Price, J. (1994). How unique are spectral signatures? Remote Sensing of Environment, 49(3), 181- 186. https://doi.org/10.1016/0034-4257(94)90013-2

Programa REDD/CCAD-GIZ-SINAC. 2015. Inventario Nacional Forestal de Costa Rica 2014-2015. Resultados y Caracterizacion de los Recursos Forestales. Preparado por: Emanuelli, P., Milla, F., Duarte, E., Emanuelli, J., Jimenez, A. y Chavarria, M.I. Programa Reduccion de Emisiones por Deforestacion y Degradacion Forestal en Centroamerica y la Republica Dominicana (REDD/CCAD/GIZ) y Sistema Nacional de Areas de Conservacion (SINAC) Costa Rica. San Jose, Costa Rica, 380 p.

Propastin, P. A. (2009). Spatial non-stationarity and scale-dependency of prediction accuracy in the remote estimation of lai over a tropical rainforest in Sulawesi, Indonesia. Remote Sensing of Environment, 113(10), 2234-2242. https://doi.org/10.1016/j.rse.2009.06.007

R Core Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., y Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547-560. https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2

SENARA. (2018). ¿Qué es el DRAT? Disponible en: http://www.senara.or.cr/drat/.X

Shumway, R. y Stoffer, D. (2017). Time Series Analysis: Using the R Statistical Package. Free Dog Publishing.

Stockli, R. T., Rutishauser, I., Liniger, B. M., y Denning, A. (2011). A global reanalysis of vegetation phenology, J. Geophys. Res., 116(G03020). https://doi.org/10.1029/2010JG001545.

Trenberth, K. E. (1997). The definition of El Nino. Bulletin of the American Meteorological Society, 78(12), 2771-2777. https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0

Varpe, O. (2017). Life history adaptations to seasonality. Integrative and Comparative Biology, 57(5), 943-960. https://doi.org/10.1093/icb/icx123.

Vina, A. y Gitelson, A. (2005). New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letters, 32(17), 1-4. https://doi.org/10.1029/2005GL023647

Wang, Q., Adiku, S., Tenhunen, J., y Granier, A. (2005). On the relationship of ndvi with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2), 244-255. https://doi.org/10.1016/j.rse.2004.10.006

Publicado
2019-07-01
Cómo citar
Vega-Araya, M., & Alvarado-Barrantes, R. (2019). Análisis de las series de tiempo de variables biofísicas para cuatro ecorregiones de Guanacaste, Costa Rica. Revista De Ciencias Ambientales, 53(2), 60-96. https://doi.org/10.15359/rca.53-2.4
Sección
Artículos