Un jardín de lluvia para la remoción de nitrógeno de la escorrentía en ciudades tropicales

Palabras clave: Compuestos nitrogenados; parámetros fisicoquímicos; gestión del agua

Resumen

Los jardines de lluvia son depresiones del suelo cubiertas con plantas, ubicados estratégicamente en ciudades, para capturar el agua proveniente de la escorrentía pluvial, evitando así la entrada de contaminantes y de nutrientes en exceso a los ecosistemas acuáticos. A pesar de su importancia, la implementación de este tipo de tecnología en ciudades costeras tropicales es escasa; debido a esto se construyó un jardín de lluvia a escala, en las instalaciones de la Universidad de Cartagena, Colombia, para determinar las tasas de eliminación de compuestos nitrogenados (nitritos, nitratos, TKN, amoniaco y nitrógeno (N) total) presentes en la escorrentía pluvial simulada, con una concentración de 25 mg de N/L de agua. Los resultados muestran que el modelo de jardín de lluvia propuesto, puede reducir exitosamente los niveles de nitrógeno siempre que la escorrentía que ingresa al sistema no supere 0.91 L/min/m2, por lo anterior este diseño representa una alternativa para el manejo de la escorrentía pluvial cargada de compuestos nitrogenados en ciudades tropicales.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor

Reinaldo J. Fajardo-Herrera, Biology program, University of Cartagena
Teacher Assistant, Biology program, University of Cartagena, Colombia.
Juan C. Valdelamar-Villegas, Environmental and Computational Chemistry Group, University of Cartagena
Researcher, Environmental and Computational Chemistry Group, University of Cartagena, Colombia.
Javier Mouthon Bello
Associate Professor, Faculty of Engineering, University of Cartagena, Colombia. 

Citas

Aye, N., Butterly, C., Sale, P., & Tang, C. (2018). Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology and Biochemistry, 123, 33-44. https://doi.org/10.1016/j.soilbio.2018.04.027

Bednaršek, N., Tarling, GA., Bakker, DCE., Fielding S., & Jones, E. (2012). Extensive dissolution of live pteropods in the Southern Ocean. Nat Geosci., 5(12), 881-885. https://doi.org/10.1038/ngeo1635

Black, C. A. (1975). Relaciones suelo-planta (vol. 2). Ed. Hemisferio Sur.

Bonin, C., Lal, R., Schmitz, M., Wullschleger, M. (2012). Soil physical and hydrological properties under three biofuel crops in Ohio. Acta Agric. Scand. Sect. B Soil Plant Sci., 62, 595-603. https://doi.org/10.1080/09064710.2012.679309

Chahal, M., Shic, Z., & Flury, M. (2016). Nutrient leaching and copper speciation in compost-amended bioretention systems, Science of the Total Environment, 556(15), 302–309. https://doi.org/10.1016/j.scitotenv.2016.02.125

Church, S. (2015). Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landscape and Urban Planning, 134, 229-240. https://doi.org/10.1016/j.landurbplan.2014.10.021

Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environ. Res. 78(3), 284-293. https://doi.org/10.2175/106143005X94376

Davis, A.P., W.F. Hunt, R.G. Traver, & Clar, M. (2009). Bioretention technology: Overview of current practice and future needs. J. Env. Eng., 135(3), 109-117. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:3(109)

Dietz, M., & Clausen, J. (2005). A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut., 167(1-4), 123-138. https://doi.org/10.1007/s11270-005-8266-8

Dong, J. Q., & Horton, W. (1993). Kinetic quasitoroidal ion temperature gradient instability in the presence of sheared flows. Physics of Fluids B: Plasma Physics, 5, 1581-2007. https://doi.org/10.1063/1.860898

EFE Agency Ed. (2016). USA. Retrieved from http://www.efe.com/efe/usa/puerto-rico/crean-jardin-de-lluvia-en-san-juan-para-filtrar-agua-y-eliminar-contaminantes/50000110-3036700.

Fan, K., Weisenhorn, P., Gilbert, J. A., Shi, Y., Bai, Y., & Chu, H. (2018). Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology and Biochemistry, 121, 185–192. https://doi.org/10.1016/j.soilbio.2018.03.017.

Fletcher, T., Zinger, Y., Deletic, A., Bratières, K. (2007). Treatment efficiency of biofilters; results of a large-scale column study. In Proceedings of the thirteenth international conference on rain water catchment system (pp. 1-8). Newcastle NSW, Australia: University of Newcastle.

Grenestam, E., & Nordin, M. (2018). Estimating the impact of agro-environmental payments on nutrient runoff using a unique combination of data. Land Use Policy 75, 388-398. doi: 10.1016/j.landusepol.2018.03.046

Hatt, B., Deletic, A., & Fletcher, T. (2017). Stormwater reuse: designing biofiltration systems for reliable treatment. Water Science and Technology, 55(4), 201-209. https://doi.org/10.2166/wst.2007.110

Hatt, B., Fletcher, T., Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365, 310-321. https://doi.org/10.1016/j.jhydrol.2008.12.001

Henderson, C., Greenway, M., & Philips, I. (2007). Removal of dissolved nitrogen, phosphorus and carbon by stormwater biofiltration mesocosms. Water Sci. Technol, 55(4), 183-191. https://doi.org/10.2166/wst.2007.108

Hong, J., Geronimo, F. K., Choi, H., & Kim, L. H. (2018). Impacts of nonpoint source pollutants on microbial community in rain gardens. Chemosphere, 209, 20-27. https://doi.org/10.1016/j.chemosphere.2018.06.062

Dussaillant, A., Wu, C., & Potter, K. (2004). Richards Equation Model of a Rain Garden. Journal of Hydrologic Engineering, 9(3), 219–225.

Hostetler, M. (2009). Conserving biodiversity in subdivision development (pp. 71–80). University of Florida, Gainesville,

Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. (2016). Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, 13(1), 205–212. https://doi.org/10.1007/s11355-016-0309-3

Lei, T., Guo, X., Sun, X., Ma, J., Zhang, S., & Zhang, Y. (2018). Prediction of soil urea conversion and quantification of the importance degrees of influencing factors through a new combinatorial model based on cluster method and artificial neural network. Chemosphere, 199, 676-683. https://doi.org/10.1016/j.chemosphere.2018.01.151

Mailapalli, D., Burger, M., Horwath, W., R., & Wallender, W. (2013). Crop residue biomass effects on agricultural runoff Appl. Environ. Soil Sci, 1–8. https://doi.org/10.1155/2013/805206

Mehring, A. S., Hatt, B. E., Kraikittikun, D., Orelo, B. D., Rippy, M. A., Grant, S. B., ... & Levin, L. A. (2016). Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen. Ecological Engineering, 97, 138-143. https://doi.org/10.1016/j.ecoleng.2016.09.005

Montgomery, D. (2004). Diseño y análisis de experimentos. Limusa Wiley.

Muthanna, T., Viklander, M. & Thorolfsson, S. (2008). Seasonal climatic effects on the hydrology of a rain garden. Hydrological Processes, 22(11), 1640–1649. doi:10.1002/hyp.6732

Muthanna, T., Viklander, M., Gjesdahl, N. & Thorolfsson, S. (2007). Heavy metal removal in cold climate bioretention. Water, Air, and Soil Pollution, 183(1-4), 391-402.

Özkan, U., & Gökbulak, F. (2017). Effect of vegetation change from forest to herbaceous vegetation cover on soil moisture and temperature regimes and soil water chemistry. CATENA, 149(1), 158–166. https://doi.org/10.1016/j.catena.2016.09.017

Raij, I., Ben-Gal, A., & Lazarovitch, N. (2017). Soil and irrigation heterogeneity effects on drainage amount and concentration in lysimeters: A numerical study. Agricultural Water Management, 195, 1–10. https://doi.org/10.1016/j.agwat.2017.09.012

Rascio, N., & La Rocca, N. (2013). Biological nitrogen fixation. Encyclopedia of Ecology (2nd ed., pp. 264-279).

Rice, E., Baird, R.B., & Eaton, A.D. (Ed.). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association, American Water Works Association, Water Environment Federation.

Rodríguez, H. (2014). Mimbrea. Retrieved from http://www.mimbrea.com/tecnicas-de-depuracion-natural-de-aguas-residuales/

Rodrigues, V., Estrany, J., Ranzini, M., De Cicco, V., Martín-Benito, J. M. T., Hedo, J., & Lucas-Borja, M. E. (2018). Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Science of the Total Environment, 622, 1553–1561. https://doi.org/10.1016/j.scitotenv.2017.10.028

Suekane, W., Gasparetto, E., Martins, D. (2012). Enraizamento de estacas de Duranta repens Linn “Aurea” em função de doses de iba. Revista Científica Eletrônica de Agronomia, Garça, 21, 1-9.

Shukla, M.K. (2013). Soil Physics: An Introduction. Boca Raton, Florida: CRC Press.

Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual (Vol. 3). Denver, Colorado, EEUU.2010.

Warn, E., & Adamo, S. (2014). The impact of climate change: Migration and cities in South America. World Meteorological Organization 63(2). Retrieved from https://public.wmo.int/en/resources/bulletin/impact-of-climate-change-migration-and-cities-south-america.

Wilkinson, G. (2017). Eutrophication of Freshwater and Coastal Ecosystems. In Martin, A., Abraham, Encyclopedia of Sustainable Technologies (pp. 145-152). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10160-5

Xu, G., Zhang, J., Li, P., Li, Z., Lu, K., Wang, X., Wang, F., Cheng, Y., & Wang, B. (2018). Vegetation restoration projects and their influence on runoff and sediment in China. Ecological Indicators, 95(1), 233-241. https://doi.org/10.1016/j.ecolind.2018.07.047

Yang, H.; Dick, W. McCoy, E. Phelan, L.; Grewal, P. (2013). Field evaluation of a new biphasic rain garden for stormwater flow management and pollutant removal. Ecological Engineering, 54, 22-31. https://doi.org/10.1016/j.ecoleng.2013.01.005

Yang, H., McCoy, E. L., Grewal, P. S., & Dick, W. A. (2010). Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems. Chemosphere, 80(8), 929–934. https://doi.org/10.1016/j.chemosphere.2010.05.021

Yang, W., Weber, K. A., Silver, W. L. (2012). Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci., 5, 538−541. https://doi.org/10.1038/ngeo1530

Publicado
2019-07-01
Cómo citar
Fajardo-Herrera, R., Valdelamar-Villegas, J., & Mouthon Bello, J. (2019). Un jardín de lluvia para la remoción de nitrógeno de la escorrentía en ciudades tropicales. Revista De Ciencias Ambientales, 53(2), 132-146. https://doi.org/10.15359/rca.53-2.7
Sección
Notas técnicas