La cubierta vegetal y la erosión de suelos por surcos por eventos lluviosos extremos en ambientes semiáridos

  • Belén Cárceles-Rodríguez Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
  • Baltazar Gálvez-Ruiz Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
  • José Ramón Francia-Martínez Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
  • Simón Cuadros Tavira Universidad de Córdoba, Campus de Rabanales
  • Carmen Rocío Rodríguez Pleguezuelo Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
  • Víctor Hugo Durán-Zuazo Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Palabras clave: Almendro, erosión por surcos, evento extremo, clima mediterráneo

Resumen

La conservación del recurso suelo en ambientes de tipo semiárido constituye uno de los mayores retos de los sistemas agrícolas y, en particular, en la región mediterránea. En el presente estudio se han comparado dos tipos de manejos de suelo, mínimo laboreo (ML) y mínimo laboreo con cubierta vegetal espontánea (MLVE), en una plantación de almendro en secano y en pendiente (35%), ante un evento extraordinario durante el año 2015 (91,3 mm y EI30 de 2 719,89 mm ha-1 h-1). Ante esta situación, en las parcelas de MLVE no se registró la formación de surcos en contraste con las de ML, donde la pérdida de suelo total fue más de 12 veces inferior a la registrada en estas últimas. Este hecho demuestra la eficacia de la cubierta vegetal en la protección del suelo agrícola frente a la erosión con eventos extremos de esta naturaleza. Asimismo, para el manejo de ML, la erosión por surcos representó más del 60% de la pérdida de suelo total, lo que indica el dominio de este tipo de erosión. Finalmente, cabe señalar que este evento supone la práctica totalidad de la pérdida de suelo registrada en las parcelas experimentales durante el período 2012-2015, lo que, en consecuencia, muestra el impacto significativo de los eventos extremos en las tasas de erosión en la región mediterránea.

Biografía del autor

Belén Cárceles-Rodríguez, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Investigadora
Baltazar Gálvez-Ruiz, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Técnico especialista
José Ramón Francia-Martínez, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Investigador
Simón Cuadros Tavira, Universidad de Córdoba, Campus de Rabanales
Profesor titular
Carmen Rocío Rodríguez Pleguezuelo, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Investigadora
Víctor Hugo Durán-Zuazo, Instituto de Investigación y Formación Agraria y Pesquera (IFAPA)
Investigador

Citas

Blake G. R. & Hartge K. H. (1986). Bulk Density. Physical and Mineralogical Methods. In A. Klute (Ed); Methods of soil analysis (Parte 1; pp. 363-375). Wisconsin; USA: American Society of Agronomy and Soil Science Society of America.

Bruno; C.; Di Stefano; C.; Ferro; V. (2008). Field investigation on rilling in the experimental Sparacia area; South Italy. Earth Surface Processes and Landforms; 33; 263-279. Doi: https://doi.org/10.1002/esp.1544

Campbell; D. J. and Henshall; J. K. (1991). Bulk Density in Soil Analysis; Physical Methods; In: K. A. Smith and C. E. Mullins (Eds.). New York: Marcel Dekker.

Carollo; F. G.; Di Stefano; C.; Ferro; V.; Pampalone V. (2015). Measuring rill erosion at plot scale by a drone-based technology. Hydrological Processes; 29 (17); 3802-3811. doi: https://doi.org/10.1002/hyp.10479

Cerdan; O.; Le Bissonnais; Y.; Couturier; A.; Bourennane; H. & Souchére; V. (2002). Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy; France. Soil & Tillage Research; 67; 99-108. doi: https://doi.org/10.1016/s0167-1987(02)00045-4

Christensen; J. H.; Hewitson; B.; Busuioc; A.; Chen; A.; Gao; X.; Held; I.; Jones; R.; Kolli; R. K.; Kwon; W. T.; Laprise; R.; Rueda; V. M.; Mearns; L.; Menéndez; C. G.; Räisänen; J.; Rinke; A. & Whetton; A. S. (2007). Regional Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon; S. D. Qin; M. Manning; Z. Chen; M. Marquis; K. B. Averyt; M. Tignor and H. L. Miller (Eds.). Cambridge: Cambridge University Press.

De Alba; S.; Benito; G. & Pérez-González; A. (1998). Erosión del suelo en episodios de lluvia de elevada intensidad versus episodios de moderada y baja intensidad y elevada frecuencia en ambientes semiáridos. En A. Gómez-Ortiz; F. Salvador; L. Schulte; A. García (Eds.); Investigaciones recientes de la geomorfología española. Granada: Sociedad Española de Geomorfología.

De Alba Alonso S. (2002). Erosión hídrica en campos de agricultura extensiva. Cuad. Soc. Esp. Cien. For.; 13; 183-190.

De Baets; S.; Poesen; J.; Knapen; A. & Galindo; P. (2007). Impact of root architecture; soil characteristics and flow shear stress on the erosion-reducing potential of roots during concentrated flow. Earth surface processes and landforms; 32(9); 1323-1345. doi: https://doi.org/10.1002/esp.1470

De Baets; S.; Poesen; J.; Meersmans; J. & Serlet; L. (2011). Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena; 85(3); 237-244. doi: https://doi.org/10.1016/j.catena.2011.01.009

Durán; V. & Rodríguez; C. (2008a). Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development; 28(1); 65-86. doi: https://doi.org/10.1051/agro:2007062

Durán; V.; Rodríguez; C.; Francia; J.; Martínez; A.; Arroyo; L.; Cárceles; B. & Navarro; M. (2008b). Benefits of plant strips for sustainable mountain agriculture. Agronomy for Sustainable Development 28(4); 497-505. doi: https://doi.org/10.1051/ agro:2008020

Durán; V.; Rodríguez; C.; Flanagan; D.; García; I. & Muriel; J. L. (2011). Sustainable land use and agricultural soil. In E. Lichtfouse (Ed.); Alternative Farming Systems; Biotechnology; Drought Stress and Ecological Fertilisation; Sustainable Agriculture Reviews 6. Springer: New York. doi: https://doi.org/10.1007/978-94-007-0186-1

Francia; J.; Durán V. & Martínez; A. (2006). Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Science of the Total Environment; 358(1-3); 46-60. doi: http://dx.doi.org/10.1016/j.scitotenv .2005.05.036

García-Ruíz; J.; Nadal-Romero; E.; Lana-Renault; N. & Beguería; S. (2013). Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology; 198; 20-36. doi: http://dx.doi.org/10.1016/j.geomorph.2013.05.023

Giorgi; F. & Lionello; P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change; 63(2-3); 90-104. doi: http://dx.doi.org/10.1016/j.gloplacha.2007.09.005

González-Hidalgo; J. C; de Luis; M. & Peña; J. L. (2005). Los eventos extremos de precipitación; la variabilidad del clima y la erosión del suelo. Reflexiones ante el cambio del clima en los sistemas mediterráneos. Cuaternario y Geomorfología; 19 (1-2); 49-62.

Goubanova; K. & Li; L. (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change 57(1-2); 27-42. doi: http://dx.doi.org/10.1016/j.gloplacha. 2006.11.012

Gyssels; G.; Poesen; J.; Bochet; E. & Li; Y. (2005). Impact of plant root on the resistance of soils to erosion by water: a review. Progress in physical geography 29(2); 189-217. doi: https://doi.org/10.1191/0309133305pp443ra

Kent-Mitchell; J. & Bubenzer; G. (1980). Soil loss estimation. In:t Kirkby MJ & Morgan RPC (Eds.); Soil erosion; Chichester; England: John Wiley & Sons.

Ministerio de Agricultura; Alimentación y Medio Ambiente. (2015). Encuesta sobre superficies y rendimientos de cultivos. España; Madrid: Autor.

Martínez; V.; Martínez; R.; Francia; J. & González; S. (2004). Conservación del suelo y del agua. Aspectos generales. Sistemas de agricultura de conservación. En R.P. Fernández; S. E. González; V. A. Martínez & C. F. Navarro (Eds.); Mantenimiento y conservación del suelo en forestaciones agrarias. Córdoba; España: Asociación Española Agricultura de Conservación; Suelos Vivos.

Martínez; A.; Durán; V. & Francia J. (2006). Soil erosion and runoff response to plant cover strips on semiarid slopes (SE Spain). Land Degradation and Development 17(1); 1-11. doi: https://doi.org/10.1002/ldr.674

Martínez-Casasnovas J.; Ramos; M. & Ribes-Dasi; M. (2002). Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma; 105(1-2); 125-140. doi: http://dx.doi.org/10.1016/S0016-7061(01)00096-9

Ramos; M. (2016). Soil losses in rainfed Mediterranean vineyards under climate change scenarios. The effects of drainage terraces. AIMS Agriculture and Food; 1(2); 124-143. doi: https://doi.org/10.3934/agrfood.2016.2.124

Rejman; J. & Brodowski; R. (2005). Rill characteristics and sediment transport as a function of slope length during a storm event on loess soil. Earth Surface Processess and Landforms; 30(2); 231-239. doi: https://doi.org/10.1002/esp.1177

Romer; A.; Martínez; C. & Belmonte F. (2012). Cambios de usos del suelo en la región de Murcia. El almendro como cultivo de referencia y su relación con los procesos de erosión. Nimbus: Revista de climatología; meteorología y paisaje; 29-30; 607-626.

Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th ed.). Washington; D.C.: USDA-Natural Resources Conservation Service.

Publicado
2017-05-01
Cómo citar
Cárceles-Rodríguez, B., Gálvez-Ruiz, B., Francia-Martínez, J., Cuadros Tavira, S., Rodríguez Pleguezuelo, C., & Durán-Zuazo, V. (2017). La cubierta vegetal y la erosión de suelos por surcos por eventos lluviosos extremos en ambientes semiáridos. Revista De Ciencias Ambientales, 51(1), 51-61. https://doi.org/10.15359/rca.51-1.4
Sección
Artículos

Comentarios (ver términos de uso)