Characterization of culturable bacteria isolated from mesophotic reef sites in Cuba

Keywords: Deep-sea waters, bacterioplankton, degradation, hydrolytic enzymes, metabolites

Abstract

The bacterial communities of mesophotic reef sites constitute genetic information of interest due to the particular conditions of temperature, pressure, salinity and availability of organic matter and nutrients in the environment in which they develop. The present work aimed to evaluate the bacterial diversity in waters surrounding the mesophotic reefs of Cuba during the period May-June 2017; as well as some of its biotechnological potentialities. Bacterial cultures were isolated on marine agar medium for two water column depth levels at 10 sampling sites.  Subsequently, the metabolic capacities of the isolates were evaluated and related to the assimilation of different carbon sources and the production of bioactive metabolites.  The results allowed the characterization of 30 bacterial cultures from subsurface-level and 32 from deep-sea waters.  The highest percentage corresponds to Gram positive (G+) sporulated bacilli and Gram negative (G-) bacilli.  Likewise, it was shown that 85.5% of the isolates degrade carbohydrates of different nature and 96.8% produce hydrolytic enzymes with caseinase, gelatinase, lipase or amylase activity.  The ability to degrade petroleum oil and phenolic compounds indistinctly was detected in 61.3% of the isolates.  Among the potentialities of biomedical and industrial interest, surfactant and L-asparaginase activity was detected in 53% and 32% of the cultures, respectively.  For its part, the taxonomic characterization of 40 cultures selected for their metabolic potentials showed that the genus Bacillus presented greater biological activity.  These results constitute the first approach to the characterization of bacterial diversity in mesophotic reef sites of Cuba.

Downloads

Download data is not yet available.

References

Arnosti, C. (2014). Patterns of microbially driven carbon cycling in the ocean: links between extracellular enzymes and microbial communities. Ad. Oceanogra., 2014, 1-12. https://doi.org/10.1155/2014/706082
Atlas, R. M. (2010). Handbook of microbiological media. EE. UU.: CRC Press.
Becker, S., Scheffel, A., Polz, M. F. & Hehemann, J. H. (2017). Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appli. Environ. Microbiol., 83(9). https://doi.org/10.1128/AEM.03389-16
Benson, T. (2001). Microbiological Applications Laboratory Manual in General Microbiology. 8th Edition. EE. UU.: The McGraw-Hill.
Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A. & Prinsep, M. R. (2018). Marine natural products. Nat. Prod. Rep., 35(1), 8-53. https://doi.org/10.1039/c7np00052a
Casillo, A., Lanzetta, R., Parrilli, M. & Corsaro, M. M. (2018). Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar. Drugs, 16(2), 69. https://doi.org/10.3390/md16020069
Chen, Y.-Y., Kao, T.-W., Wang, C.-C., Chen, Y.-J., Wu, C.-J., Lai, C.-H. & Chen, W.-L. (2019). Exposure to polycyclic aromatic hydrocarbons and risk of disability among an elderly population. Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356-019-04498-3
Clarke, K. R. & Warwick, R. M. (2001). Change in Marine Communities: An approach to statistical analysis and interpretation (2nd ed.). United Kingdom: PRIMER-E Ltd.
Cui, Y., Chun, S. J., Baek, S. H., Lee, M., Kim, Y., Lee, H. G., ... & Oh, H. M. (2019). The water depth-dependent co-occurrence patterns of marine bacteria in shallow and dynamic Southern Coast, Korea. Sci. Rep., 9(1), 1-13. https://doi.org/10.1038/s41598-019-45512-5
Dang, H. & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev., 80(1), 91-138. https://doi.org/10.1128/MMBR.00037-15
Delabary, G. S., Silva, M. C. D., Silva, C. S. D., Baratieri, L. Z., Melo, T. M. D., Stramosk, C. A, ... & Silva, M. A. C. D. (2020). Influence of temperature and culture media on growth and lipolytic activity of deep-sea Halomonas sulfidaeris LAMA 838 and Marinobacter excellens LAMA 842.0 Ocean Coast. Res., 68(e20282) 1-11. https://dx.doi.org/10.1590/S2675-28242020068282
Dias, A. C., Andreote, F. D., Dini-Andreote, F., Lacava, P. T., Sá, A. L., Melo, I. S., ... & Araújo, W. L. (2009). Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. W. J. Microbiol. Biotechnol., 25(7), 1305-1311. https://doi.org/10.1007/s11274-009-0013-7
Finnerty, W. R. (1994). Biosurfactants in environmental biotechnology. Current Opinion Biotechnol., 5(3), 291-295. https://doi.org/10.1016/0958-1669(94)90031-0
Fuentes, S., Méndez, V., Aguila, P. & Seeger, M. (2014). Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Applied Microbiol. Biotechnol., 98(11), 4781-4794. https://doi.org/10.1007/s00253-014-5684-9
Gawas, V. S., Shivaramu, M. S., Damare, S. R., Pujitha, D., Meena, R. M. & Shenoy, B. D. (2019). Diversity and extracellular enzyme activities of heterotrophic bacteria from sediments of the Central Indian Ocean Basin. Sci. Rep., 9(1), 1-9. https://doi.org/10.1038/s41598-019-45792-x
Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B., ... & Somerfield, P. (2012). Defining seasonal marine microbial community dynamics. ISME J., 6(2), 298-308. https://doi.org/10.1038/ ismej.2011.107
Glöckner, F. O., Stal, L. J., Sandaa, R.-A., Gasol, J. M., O’Gara, F., Hernandez, F., ... & Pitta, P. (2012). Marine Microbial Diversity and its role in Ecosystem Functioning and Environmental Change. In J. B. Calewaert & N. McDonough (Eds.), Marine Board Position Paper 17 (pp. 5-77) Belgium: Marine Board-ESF. https://doi.org/10.13140/RG.2.1.5138.6400
Harrigan, W. F. & McCance, M. E. (1968). Métodos de laboratorio en microbiología. España: Academia.
Ifegwu, O. C. & Anyakora, C. (2015). Polycyclic aromatic hydrocarbons: part I. Exposure. In G. Makowki (Ed.), Advances in Clinical Chemistry (pp. 277-304). EE.UU.: Academic Press. https://dx.doi.org/10.1016/bs.acc.2015.08.001
Izadpanah Qeshmi, F., Homaei, A., Fernandes, P. & Javadpour, S. (2018). Marine microbial L-asparaginase: Biochemistry, molecular approaches and applications in tumor therapy and in food industry. Microbiol. Res., 208, 99-112. https://doi.org/10.1016/j.micres.2018.01.011
Jain, R., Zaidi, K. U., Verma, Y. & Saxena, P. (2012). L-asparaginase: A promising enzyme for treatment of acute lymphoblastic leukiemia. People’s J. Sci. Res., 5(1), 29-35. https://imsear.searo.who.int/handle/123456789/140315
Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. (2019). Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Mar. Drugs, 17(12), 656. https://doi.org/10.3390/md17120656
Jones, S. E. & Lennon, J. T. (2010). Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci., 107(13), 5881-5886. https://doi. org/10.1073/pnas.0912765107
Kai, W., Peisheng, Y., Rui, M., Wenwen, J. & Zongze, S. (2017). Diversity of culturable bacteria in deep-sea water from the South Atlantic Ocean. Bioengineered, 8(5), 572-584. https://doi.org/10.1080/21655979.2017.1284711.
Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. & Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution-a review. Pet. 4(3), 241-249. https://doi.org/10.1016/j.petlm.2018.03.007
Lailaja, V. P. & Chandrasekaran, M. (2013). Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World J. Microbiol. Biotechnol., 29(8), 1349-1360. https://doi.org/10.1007/s11274-013-1298-0
Liu, L., Yang, H., Shin, H. D., Chen, R. R., Li, J., Du, G. & Chen, J. (2013). How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered, 4(4), 212-223. https://doi.org/10.4161/bioe.24761
Liu, Q., Fang, J., Li, J., Zhang, L., Xie, B. B., Chen, X. L. & Zhang, Y. Z. (2018). Depth-resolved variations of cultivable bacteria and their extracellular enzymes in the water column of the New Britain Trench. Front. Microbiol., 9, 135. https://doi.org/10.3389/fmicb.2018.00135
Loya, Y., Eyal, G., Treibitz, T., Lesser, M. P. & Appeldoorn, R. (2016). Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs, 35(1), 1-9. https://doi.org/10.1007/s00338-016-1410-7
Lugioyo, G. M., Coto, O., Álvarez, C. & Espinosa, G. (2010). Bacillus species in the oceanic waters adjacent to Cuba: Association between their distribution and metabolic activity. Rev. Cien. Mar. Cost., 2(1), 61-72. https://doi.org/10.15359/revmar.2.5
Lugioyo, G. M., González, D. & García, I. (2020). Evaluación de la calidad del agua de los arrecifes del golfo de Cazones, sur de Cuba, a partir de algunos indicadores microbiológicos y químicos. Rev. Cien. Mar. Cost., 12(1), 9-26. https://dx.doi.org/10.15359/revmar.12-1.1
Miravet, M. E. (2003). Abundancia, actividad y diversidad de las bacterias heterótrofas en el Golfo de Batabanó y su uso como indicadoras ambientales. (Tesis de doctorado no publicada). Universidad de La Habana, Cuba.
Miravet, M. E., Lugioyo, M., Loza, S., Enríquez, D., Delgado, Y., Carmenate, M. & Pérez, D. (2009). Procedimientos para el Monitoreo de la Calidad Ambiental en la Zona Marino Costera a partir de Microorganismos. República Dominicana: Ediciones Centenario.
Miravet, M. E., Martínez-Daranas, B. & Penie, I. (1994). Indicadores microbiológicos del estado de salud de los arrecifes que bordean el archipiélago Sabana-Camagüey. Cuba: Instituto de Oceanología.
Odisi, E. J., Silvestrin, M. B., Takahashi, R. Y. U., da Silva, M. A. C. & Lima, A. O. D. S. (2012). Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron. J. Biotechnol., 15(5). https://doi.org/10.2225/vol15-issue5-fulltext-17
Olson, J. B. & Kellogg, C. A. (2010). Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol. Ecol., 73(1), 17-30. https://doi.org/10.1111/j.1574-6941.2010.00862.x
Ong, K. S., Chin, H. S. & Teo, K. C. (2011). Screening of antibiotic sensitivity, antibacterial and enzymatic activities of microbes isolated from ex-tin mining lake. African J. Microbiol. Res., 5(17), 2460-2466. https://doi.org/10.5897/AJMR11.170
Oppenheimer, C. H. & ZoBell, C. E. (1952). The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res., 11(1), 10-18.
Prabhu, R. H., Bhise, K. S. & Patravale, V. B. (2017). Marine enzymes in cancer: a new paradigm. In S. Kim & F. Toldrá (Eds.), Advances in Food and Nutrition Research. Marine Enzymes Biotechnology: Production and Industrial Applications, Part III - Application of Marine Enzymes (pp. 1-14). EE.UU.: Academic Press.
Ramlath, L., Keerthana, P. P., Safvana Fathima, P. & Mashhoor, K. (2018). Bacteria from Coral Ecosystem of Kiltan Island, Lakshadweep: Resource for Hydrolytic Enzymes. Int. J. Cell Sci. Biotechnol., 7, 1-9.
Roman, J. (2018). The ecology and conservation of Cuba's coastal and marine ecosystems. Bull. Mar. Sci., 94(2), 149-169. https://doi.org/10.5343/bms.2017.1164
Rudrapati, P. & Audipudi, A. V. (2015). Characterization and bioprocessing of oncolytic enzyme-L-asparaginase isolated from marine bacillus AVP 14. Int. J. Pharm. Sci. Rev. Res., 30(2), 195-201.
Sanz-Sáez, I., Salazar, G., Sánchez, P., Lara, E., Royo-Llonch, M., Sà, E. L., .... & Acinas, S. G. (2020). Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol., 20(1), 1-16. https://doi.org/10.1186/s12866-020-01884-7
Sardessai, Y. N. & Bhosle, S. (2002). Organic solvent-tolerant bacteria in mangrove ecosystem. Current Sci., 82(6), 622-623.
Seeger, M. & Pieper, D. H. (2010). Genetics of biphenyl biodegradation and co-metabolism of PCBs. In K. N. Timmis (Ed.), Handbook of hydrocarbon and Lipid Microbiology (pp. 1180-1198). Germany: Springer-Verlag. https://doi.org/10.1007/978-3-540-77587-4_82
Shon, H. K., Vigneswaran, S. & Snyder, S. A. (2006). Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol., 36(4), 327-374. https://doi.org/10.1080/10643380600580011
Sivaperumal, P., Kamala, K., & Rajaram, R. (2017). Bioremediation of industrial waste through enzyme producing marine microorganisms. In S. Kim & F. Toldrá (Eds.), Advances in Food and Nutrition Research. Marine Enzymes Biotechnology: Production and Industrial Applications, Part III - Application of Marine Enzymes (pp. 165-179). EE.UU.: Academic Press.
Sivasankar, P., Sugesh, S., Vijayan, P., Sivakumar, K., Vijayalakshmi, S., Balasubramanian, T. & Mayavu, P. (2013). Efficient production of L-asparaginase by marine Streptomyces sp. isolated from Bay of Bengal, India. African J. Microbiol. Res., 7(31), 4015-4021. https://doi.org/10.5897/AJMR12.2184
Trincone, A. (2018). Update on marine carbohydrate hydrolyzing enzymes: biotechnological applications. Molecules, 23(4), 901. https://doi.org/10.3390/molecules23040901
Vela, G. R. & Ralston, J. R. (1978). The effect of temperature on phenol degradation in wastewater. Canadian J. Microbiol., 24(11), 1366-1370. https://doi.org/10.1139/m78-219
Ward, C. S., Yung, C. M., Davis, K. M., Blinebry, S. K., Williams, T. C., Johnson, Z. I. & Hunt, D. E. (2017). Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J., 11(6), 1412-1422. https://doi.org/10.1038/ismej.2017.4
Published
2021-04-23
How to Cite
Ortiz-Guilarte, E., Iglesias-Rodríguez, M. V., Núñez-Moreira, R., Caballero Barreto, V., González-Tamayo, D., & Lugioyo-Gallardo, G. (2021). Characterization of culturable bacteria isolated from mesophotic reef sites in Cuba. Journal of Marine and Coastal Sciences, 13(1), 9-26. https://doi.org/10.15359/revmar.13-1.1

Comentarios (ver términos de uso)