At the rhythm of the tide: acoustic landscape characterization of the coastal areas of Punta Morales, Puntarenas, Costa Rica

Keywords: Tides, coastal ecosystems, ecoacoustics, geophonies, acoustic indices

Abstract

In coastal ecosystems, geophonies are a fundamental part of the acoustic landscape, and the impact of waves on their geomorphology is an example of it. An Audiomoth recorder was placed in four coastal sites of Punta Morales, Puntarenas, Costa Rica, from November 22 to December 18, 2020, and the devices were programmed to record 60 seconds every 10 minutes for 24 hours with the objective of characterizing the acoustic landscape associated to the tidal cycles of this locality. From the recordings, for the Normalized Difference Soundscape Index (NDSI), the Technophones, the Acoustic Entropy (TE), and the Sound Pressure Level (SPL) were analyzed. Comparisons of one-way trimmed means of all indices were made between the four study areas, and a correlation was made between the tide level and the SPL value at each sampling site; finally, these values were compared at high and low tide at each location. Differences were found for all indices between sites, a positive correlation was identified between the SPL of two of the study areas with the tide level, and differences in the SPL were observed between high tide and low tide. The substrate and vegetation of the surveyed region could have influenced these differences. In addition, waves significantly modify the acoustic dynamics of some places, so this factor could have affected the soundscape in this coastal zone.

Downloads

Download data is not yet available.

Author Biographies

Ian Portuguez-Brenes, Universidad Nacional

Programa de Manejo de Recursos Naturales, Escuela de Ciencias Exactas y Naturales, Estatal a Distancia, Mercedes de Montes de Oca, San José, Heredia, Costa Rica.

Roberto Vargas-Masís, Universidad Estatal a Distancia

Laboratorio de Investigación e Innovación Tecnológica, Vicerrectoría de Investigación,

Héctor Perdomo-Velázquez, Universidad Nacional Autónoma de México

Centro de Estudios Mexicanos

Andrea García-Rojas, Universidad Nacional

Escuela de Ciencias Biológicas

References

Alfaro-Rojas, D., Portuguez-Brenes, I., Perdomo-Velázquez, H. & Vargas-Masís, R. (2020). Ruido ambiental en áreas verdes urbanas y periurbanas de una microcuenca en Heredia, Costa Rica. UNED Res. J., 12(2), 28-46. https://doi.org/10.22458/urj.v12i2.2846

Barber, J. R., Crooks, K. R. & Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. & Evol., 25(3), 180-189. doi: https://10.1016/j.tree.2009.08.002

Best, D. J. & Roberts, D. E. (1975). Algorithm AS 89: the upper tail probabilities of Spearman's rho. J. R. Stat. Soc. Ser. C (Appl. Stat.), 24(3), 377-379. https://doi.org/10.2307/2347111

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli, G., ... & Kirschel, A. N. (2011). Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J. Appl. Ecol, 48(3), 758-767. https://doi.org/10.1111/j.1365-2664.2011.01993.x

Bormpoudakis, D., Sueur, J. & Pantis, J. D. (2013). Spatial heterogeneity of ambient sound at the habitat type level: ecological implications and applications. Landsc. Ecol., 28(3), 495-506. https://doi.org/10.1007/s10980-013-9849-1

Chesmore, D., Frommolt, K.-H., Wolff, D., Bardeli, R. & Huebner, S. (2008, May). Computational bioacoustics: New tools for assessing biological diversity. Paper presented in the Ninth meeting of the Conference of the Parties (COP 9), Germany.

Crawley, M. (2002). The R Book (2nd ed.). U.K.: John Wiley & Sons Ltd.

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci., 4(5), 293-297. https://doi.org/10.1038/ngeo1123
Doser, J. W., Hannam, K. M. & Finley, A. O. (2020). Characterizing functional relationships between anthropogenic and biological sounds: a western New York state soundscape case study. Landsc. Ecol., 35(3), 689-707. https://doi.org/10.1007/s10980-020-00973-2

Eldridge, A., Guyot, P., Moscoso, P., Johnston, A., Eyre-Walker, Y. & Peck, M. (2018). Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic., 95, 939-952. https://doi.org/10.1016/j.ecolind.2018.06.012

Espinoza, M. Á. L., Crespo, G. D. L. C. R., Junco, O. D. & Hernández, J. G. (2019). Los servicios ecosistémicos en manglares: beneficios a la resiliencia del ecosistema ante cambios climáticos, a la comunidad y su desarrollo local. REMCA, 2(2), 120-127.

Farina, A. (2014). Soundscape ecology: principles, patterns, methods and applications. Springer Science & Business Media. EE. UU.: Springer.

Farina, A., Eldridge, A. & Li, P. (2021). Ecoacoustics and Multispecies Semiosis: Naming, Semantics, Semiotic Characteristics, and Competencies. Biosemiotics, 14, 141–165. https://doi.org/10.1007/s12304-021-09402-6

Ferrini, F., Fini, A., Mori, J. & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 42-47. https://doi.org/10.3390/su12104247

Gómez, W. E., Isaza, C. V. & Daza, J. M. (2018). Identifying disturbed habitats: A new method from acoustic indices. Ecol. Inform., 45, 16-25. https://doi.org/10.1016/j.ecoinf.2018.03.001

Han, X., Huang, X., Liang, H., Ma, S. & Gong, J. (2018). Analysis of the relationships between environmental noise and urban morphology. Environ. Pollut., 233, 755-763. https://doi.org/10.1016/j.envpol.2017.10.126

Hildebrand, J. A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser., 395, 5-20. https://doi.org/10.3354/meps08353

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802. https://doi.org/10.1093/biomet/75.4.800

Karjadi, E. A., Badiey, M., Kirby, J. T. & Bayindir, C. (2011). The effects of surface gravity waves on high-frequency acoustic propagation in shallow water. IEEE J. Ocean. Eng., 37(1), 112-121. https://doi.org/10.1109/JOE.2011.2168670

Kasten, E. P., Gage, S. H., Fox, J. & Joo, W. (2012). The remote environmental assessment laboratory's acoustic library: An archive for studying soundscape ecology. Ecol. Inform., 12, 50-67. https://doi.org/10.1016/j.ecoinf.2012.08.001

Ligges, U., Krey, S., Mersmann, O. & Schnackenberg, S. (2018). tuneR: analysis of music and speech. See https://CRAN. R-project. org/package= tuneR.

Mair, P. & Wilcox, R. (2020). Robust statistical methods in R using the WRS2 package. Behav. Res. Methods., 52(2), 464-488. https://doi.org/10.3758/s13428-019-01246-w

McCormick, M. I., Allan, B. J., Harding, H. & Simpson, S. D. (2018). Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci. Rep., 8(1), 1-11. https://doi.org/10.1038/s41598-018-22104-3
Monczak, A., Mueller, C., Miller, M. E., Ji, Y., Borgianini, S. A. & Montie, E. W. (2019). Sound patterns of snapping shrimp, fish, and dolphins in an estuarine soundscape of the southeastern USA. Mar. Ecol. Prog. Ser., 609, 49-68. https://doi.org/10.3354/meps12813

Mullet, T. C., Gage, S. H., Morton, J. M. & Huettmann, F. (2016). Temporal and spatial variation of a winter soundscape in south-central Alaska. Landscape Ecol., 31(5), 1117-1137. https://doi.org/10.1007/s10980-015-0323-0

Parris, K. M. & Schneider, A. (2008). Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecol. Soc. 14(1), 29. https://doi.org/10.5751/es-02761-140129

Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L. & Krause, B. L. (2011a). What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol., 26(9), 1213-1232. https://doi.org/10.1007/s10980-011-9600-8

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., ... & Pieretti, N. (2011b). Soundscape ecology: the science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Radford, C. A., Stanley, J. A., Tindle, C. T., Montgomery, J. C. & Jeffs, A. G. (2010). Localized coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser., 401, 21-29. https://doi.org/10.3354/meps08451

Ramalle-Gómara, E. & De Llano, J. A. (2003). Utilización de métodos robustos en la estadística inferencial. Aten. Primaria, 32(3), 177–182. https://doi.org/10.1016/S0212-6567(03)79241-5

Ramírez-Alán, O. (2019). Sinax: Sound Index Analysis for Ecologist. R package. Versión 1.3. Disponible en: https://github.com/osoramirez/Sinax2

Ramírez, J. D. R., Montejo, G. D. L. & Guillermo, R. J. C. (2018). Manglares, desarrollo turístico y cambio climático en Playa del Carmen, corazón del caribe mexicano. Cuad. biodivers., (55), 28-40. https://doi.org/10.14198/cdbio.2018.55.03

Retamosa-Izaguirre M. I., Ramírez-Alán O. & De la O-Castro J. (2018). Acoustic indices applied to biodiversity monitoring in a Costa Rica dry tropical forest. JEA., 2(1), 1-1. https://doi.org/10.22261/JEA.TNW2NP

Silveira, J. A. H. & Hernández, C. T. (2017). Carbono azul, manglares y políticas públicas. Elementos para Pol. Públic. 1(1), 43-52.

Simpson, S. D., Radford, A. N., Holles, S., Ferarri, M. C., Chivers, D. P., McCormick, M. I. & Meekan, M. G. (2016). Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae. In A. Popper & A. Hawkins (Eds.), The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology (pp. 1041-1048). EE. UU.: Springer. https://doi.org/10.1007/978-1-4939-2981-8_129

Sueur, J., Aubin, T. & Simonis, C. (2008a). Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics, 18(2), 213-226. https://doi.org/10.1080/09524622.2008.9753600

Sueur, J., Pavoine, S., Hamerlynck, O. & Duvail, S. (2008b). Rapid acoustic survey for biodiversity appraisal. PloS one., 3(12), e4065. https://doi.org/10.1371/journal.pone.0004065

Sueur, J., Farina, A., Gasc, A., Pieretti, N. & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta. Acust. United Acust., 100(4), 772-781. https://doi.org/10.3813/AAA.918757

Verdugo, F. J. F., Hernández, C. A. & Pardo, D. B. (2007). Ecosistemas Acuáticos costeros: Importancia, retos y prioridades para su conservación. En O. Sánchez, M. Herzig, E. Peters, R. Márquez & L. Zambrano (Eds.), Perspectivas sobre conservación de ecosistemas acuáticos en México (pp. 147-166). México: Everest Mexicana.

Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336. https://doi.org/10.2307/2332579

Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am., 34(12), 1936-1956. https://doi.org/10.1121/1.1909155

Villanueva-Rivera, L. J. & Pijanowski, B. C. (2018). Package ‘soundecology’. R package version, 1(3), 3. https://CRAN.R-project.org/package=soundecology

Yang, K. L. Center for Conservation Bioacoustics. (2019). Raven Pro: Interactive Sound Analysis Software (Version 1.6.1) [Computer software]. EE: UU.: The Cornell Lab of Ornithology. http://ravensoundsoftware.com/
Published
2021-07-27
How to Cite
Portuguez-Brenes, I., Vargas-Masís, R., Perdomo-Velázquez, H., & García-Rojas, A. (2021). At the rhythm of the tide: acoustic landscape characterization of the coastal areas of Punta Morales, Puntarenas, Costa Rica. Journal of Marine and Coastal Sciences, 49-68. https://doi.org/10.15359/revmar.13-2.4
Section
Scientific articles

Comentarios (ver términos de uso)