Dinâmica das concentrações de carbono e nitrogênio na decomposição do folhedo de cultivos subtropicais do sudeste da Espanha

Autores

  • Carmen Rocío Rodríguez Pleguezuelo Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Espanha
  • Dionisio Franco Tarifa Finca ‘‘El Zahorí’’, Patronato de Cultivos Subtropicales Plaza de la Constitución 1, Espanha
  • José Ramón Francia Martínez Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Espanha
  • Baltasar Gálvez Ruíz Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Espanha
  • Francisco Mamani Pati Universidad Pública de El Alto (UPEA), Bolívia, Estado Plurinacional da
  • Iván Francisco García Tejero Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Espanha
  • Victor Hugo Durán Zuazo Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), Espanha

DOI:

https://doi.org/10.15359/rca.52-1.10

Palavras-chave:

ciclo de nutrientes, folhedo, mediterrâneo, cultivos subtropicais

Resumo

A decomposição do folhedo é uma das principais vias de consumo de energia em um ecossistema e um dos pilares básicos no ciclo de nutrientes. Por outro lado, nas últimas décadas, os cultivos subtropicais têm se expandido de forma considerável na costa de Granada (sudeste da Espanha). Para avaliar tais ciclos foi levado a cabo um ensaio com sacolas utilizando para isso folhas da mangueira (Mangifera indica L.), anoneira (Annona cherimola Mill.), abacateiro (Persea americana Mill.) e nespereira (Eriobotrya japonica L.). O objetivo deste trabalho foi realizar um seguimento da dinâmica de decomposição dos folhedos produzidos pela mangueira, pelo abacateiro, pela anoneira e nespereira, e da evolução de seu conteúdo em carbono e nitrogênio em condições de clima mediterrâneo subtropical. As sacolas foram enterradas e retiradas a cada certo tempo para avaliar a concentração de carbono e nitrogênio, como também a perda de massa em cada uma delas. Os resultados deste estudo mostraram, de forma evidente, que os agricultores podem ser beneficiados pelo conhecimento da dinâmica de nutrientes em folhedos para melhorar a matéria orgânica no solo em longo prazo e a incorporação de nitrogênio. Neste sentido, as folhas da nespereira e da mangueira mostraram as maiores taxas de acumulação de nitrogênio e, portanto, a biomassa destas espécies poderia ser utilizada como emenda de tipo orgânico em longo prazo. Já as da anoneira, pelo contrário, acumulou maiores quantidades de carbono do que o resto dos cultivos estudados.

Biografia do Autor

Carmen Rocío Rodríguez Pleguezuelo, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA)

Investigadora, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA). Granada, España

Dionisio Franco Tarifa, Finca ‘‘El Zahorí’’, Patronato de Cultivos Subtropicales Plaza de la Constitución 1

Técnico, Finca ‘‘El Zahorí’’, Patronato de Cultivos Subtropicales Plaza de la Constitución 1. Granada, España

José Ramón Francia Martínez, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA)

Investigador, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA). Granada, España.

Baltasar Gálvez Ruíz, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA)

Técnico, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA). Granada, España

Francisco Mamani Pati, Universidad Pública de El Alto (UPEA)

Investigador titular, Universidad Pública de El Alto (UPEA). La Paz, Bolivia

Iván Francisco García Tejero, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA)

Investigador, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA). Sevilla, España.

Victor Hugo Durán Zuazo, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA)

Investigador titular, Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA). Sevilla, España.

Referências

Aerts, R. (1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79(3), 439-449. Doi: https://doi.org/10.2307/3546886

Bardgett, R. D. y Shine, A. (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31(2), 317-321. Doi: https://doi.org/10.1016/S0038-0717(98)00121-7

Barreca, D., Lagana, G., Ficarra, S., Tellone, E., Leuzzi, U. y Galtieri, A. (2011). Evaluation of the antioxidant and cytoprotective properties of the exotic fruit Annona cherimola Mill. (Annonaceae). Food Research International, 44(7), 2302-2310. Doi: https://doi.org/10.1016/j.foodres.2011.02.031

Blair, J. M. (1988). Nitrogen, sulfur and phosphorous dynamics in decomposing deciduous leaf litter in the southern Appalachians. Soil Biology and Biochemistry, 20(1), 693-701. Doi: https://doi.org/10.1016/0038-0717(88)90154-X

Casanova, P. L., Martínez, D. J., López, O. S., López, R. G. y Peña, O. B. (2015). Enfoques del pensamiento complejo en el Agroecosistemas. Interciencia, 40(3), 210-216.

Chaves, B., De Neve, S., Hofman, G., Boeck, P. y Van Cleemput, O. (2004). Nitrogen mineralization of vegetable root residues and green manures as related to their biochemical composition. European Journal of Agronomy, 21(2), 161-170.

Cookson, W. R., Osman, M., Marschner, P., Abaye, D. A., Clarck, I., Murphy, D. V., Stockdale, E. A. y Watson, C. A. (2007). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 39(3), 744-756. Doi: https://doi.org/10.1016/j.soilbio.2006.09.022

Durán, Z. V. H., Martínez, R. A., Aguilar, R. J. y Franco, T. D. (2003). El cultivo del mango (Mangifera indica L.) en la costa granadina. ISBN: 84-607-8627-7, 141 p.

Durán, Z. V. H., Rodríguez, P. C. R., Franco, T. D. y Martín, P. F. J. (2006). El cultivo del chirimoyo (Annona cherimola Mill.). ISBN: 84-609-9341-8. Granada, España. 106 p.

Durán, Z. V. H., Rodríguez, P. C. R., Francia, M. J. R. y Martín, P. F. J. (2013). Land use changes in a small watershed in the Mediterranean landscape (SE Spain): environmental implications of a shift towards subtropical crops. Journal of Land Use Science, 8(1), 47-58. Doi: https://doi.org/10.1080/1747423X.2011.620992

Dutta, R. K. y Agrawal, M. (2001). Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia, 45(4), 298-312. Doi: https://doi.org/10.1078/0031-4056-00088

Elías, F. y Ruiz, L. (1977). Agroclimatología de España. Cuaderno I.N.I.A. 7, Madrid, España.

Enoki, T. y Hawaguchi, H. (2000). Initial nitrogen and topographic moisture effects on the decomposition of pine needles. Ecological Research, 15(4), 425-434. Doi: https://doi.org/10.1046/j.1440-1703.2000.00363.x

ESYRCE. (2015) Ministerio de Agricultura, Alimentación y Medio Ambiente. Recuperado de: http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/

Gallardo, A. y Merino, J. (1992). Nitrogen inmobilization in leaf litter in two Mediterranean ecosystems of SW Spain. Biogeochemistry, 15(3), 213-228. Doi: https://doi.org/10.1007/BF00002937

García, S. P., Verardo, V., Gori, A., Fiorenza, C. M., Segura, C. A. y Fernández, G. A. (2016). Determination of lipid composition of the two principal cherimoya cultivars grown in Andalusian Region. Food Science and Technology, 65, 390-397

González, D. E., Alves, A., León, M. y Armengol, J. (2017). Characterization of Botryosphaeriaceae species associated with diseased loquat (Eriobotrya japonica) in Spain. Plant Pathology, 66(1), 77-89. Doi: https://doi.org/10.1111/ppa.12556

Lavelle, P., Blanchart, E., Martin, A., Spain, A., Toutain, F., Barois, I. y Schaefer, R. (1993). A hierarchical model for decomposition in terrestrial ecosystems: application to soil of the humid tropics. Biotropica, 25(2), 130-150. Doi: https://doi.org/10.2307/2389178

Martins, A., Azevedo, S., Raimundo, F. y Madeira, M. (2006). Decomposiço e evoluçao da composiçao estructural e do teor em nutrientes. En: II Congresso Internacional de Ciencia do Solo, Livro de resumos, Huelva.

Morín, E. (1993). El Método I: La naturaleza de la naturaleza. Madrid, España: Cátedra.

Mubarak, A. R., Elbashir, A. A., Elamin, L. A., Daldoum, D. M. A., Steffens, D. y Benckiser, G. (2008). Decomposition and nutrient release from litter fall in the semi-arid tropics of Sudan. Communications in Soil Science and Plant Analysis, 39(15-16), 2359-2377. Doi: https://doi.org/10.1080/00103620802292574

Muchiri, D. R., Mahungu, S. M y Gituanja, S. N. (2012). Studies on Mango (Mangifera indica L.) kernel fat of some Kenyan varieties in Meru. Journal of the American Oil Chemist's Society, 89(9), 1567-1575. Doi: https://doi.org/10.1007/s11746-012-2054-6

Murovhi, N. R., Materechera, S. A. y Mulugeta, S. D. (2012). Seasonal changes in litter fall and its quality from three sub-tropical fruit tree species at Nelspruit South Africa. Agroforestry Systems, 86(1), 61-71. Doi: https://doi.org/10.1007/s10457-012-9508-6

Musvoto, C., Campbell, B. M. y Kirchmann, H. (2000). Decomposition and nutrient release from mango and miombo woodland litter in Zimbabwe. Soil Biololgy & Biochemistry, 32(8-9), 1111-1119. Doi: https://doi.org/10.1016/S0038-0717(00)00023-7

Nair, P. K. R. (1998). Directions in tropical agroforestry research: past, present and future. Agroforestry Systems, 38(1-3), 223-245. Doi: https://doi.org/10.1007/978-94-015-9008-2_10

Negash, M. y Starr, M. (2013). Litterfall production and associated carbon and nitrogen fluxes of seven woody species grown in indigenous agroforestry systems in the south-eastern Rift Valley escarpment of Ethiopia. Nutrient Cycling Agroecosystems, 97(1-3), 29-41. Doi: https://doi.org/10.1007/s10705-013-9590-9

Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322-331. Doi: https://doi.org/10.2307/1932179

Pandey, R. R., Sharma, G., Tripathi, S. K. y Singh, A. K. (2007). Litterfall, litter decomposition and nutrient dynamics in a subtropical oak forest and managed plantation in northeastern India. Forest Ecololgy and Management, 240(1-3), 96-104. Doi: https://doi.org/10.1016/j.foreco.2006.12.013

Quemada, M. y Cabrera, M. L. (1995). Carbon and nitrogen mineralised from leaves and stems of four cover crops. Soil Science Society of America Journal, 59(2), 471-477. Doi: https://doi.org/10.2136/sssaj1995.03615995005900020029x

Rebecca, I. S. y Achuthan, N. M. (2006). Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. Agroforestry Systems, 67(3), 203-213. Doi: https://doi.org/10.1007/s10457-005-1107-3

Rodríguez, P. C. R. (2009) Impacto medioambiental del cultivo de especies subtropicales en terrenos con fuertes pendientes en la costa de Granada. Medidas correctoras. ISBN: 978-84-693-3312-9. Universidad de Granada (editorial).

Santa Regina, I., Rapp, M., Martin, A. y Gallardo, J. F. (1997). Nutrient release dynamics in decomposing leaf litter in two Mediterranean deciduous oak species. Annals of Forest Science, 54(8), 747-760.

Santoja, M., Rancon, A., Fromin, N., Baldy, V., Hättenschwiler, A., Fernández, C., Montès N. y Mirleau, P. (2017). Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology & Biochemistry, 111, 124-134. Doi: https://doi.org/10.1016/j.soilbio.2017.04.006

Schoeneberger, M. M. (2008). Agroforestry: working trees for sequestering carbon on agricultural lands. Recuperado de: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1001&context=usdafsfacpub

Soil Survey Staff. (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agriculture Handbook, 436. USDA, US.

Soler, E., Martínez-Calvo, J., Llacer, G. y Badenes, M. L. (2007). Loquat in Spain: production and marketing. Acta Horticulturae, 750, 45-7. Doi: https://doi.org/10.17660/ActaHortic.2007.750.3

Sun, O. J., Campbell, J., Law, B. E. y Wolf, V. (2004). Dynamics of carbon storage in soils and detritus across chronosequences of different forest types in the Pacific Northwest USA. Global Change Biololgy, 10(9), 1470-1481.

Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsu ki, K., Xue, Z., Wang, S. y Hou, Q. (2007). Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan ́an on the Loess Plateau. China Forest Ecololgy and Management, 241(1-3), 84-90. Doi: https://doi.org/10.1016/j.foreco.2006.12.026

Taylor, B. R., Parkinson, D. y Parsons, W. F. J. (1989). Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70(1), 97-104. Doi: https://doi.org/10.2307/1938416

Tecklay, T. y Malmer, A. (2004). Decomposition of leaves from two indigenous trees of contrasting qualities under shaded ─coffee and agricultural land─ uses during the dry season at Wondo Genet, Ethiopia. Soil Biology and Biochemistry, 36(5), 777-786. Doi: https://doi.org/10.1016/j.soilbio.2003.12.013

Upadhyaya, K., Sahoo, U. K., Vanlalhriatpuia, K. y Roy, S. (2012). Decomposition Dynamics and Nutrient Release Pattern from Leaf Litters of Five Commonly Occurring Homegarden Tree Species in Mizoram, India. Journal of Sustainable Forestry, 31(8), 8-16. Doi: https://doi.org/10.1080/10549811.2012.706495

Vasconcelos, S. S., Zarín, D. J., da Rosa, M. B., Oliveira, F. A. y Carvalho, C. J. R. (2007). Leaf decomposition in a dry season irrigation experiment in Eastern Amazonian forest regrowth. Biotropica, 35(5), 593-600. Doi: https://doi.org/10.1111/j.1744-7429.2007.00313.x

Xavier, A. C., Pita, J. J. L., Eduardo, R. D., Antunes, S. H., Hernandes, A., Natale, W. y Sergio, F. A. (2014). Nutrient cycling in mango trees. Ciencias Agrarias Londrina, 35(1), 259-266. Doi: https://doi.org/10.5433/1679-0359.2014v35n1p259

Publicado

2017-12-26

Como Citar

Rodríguez Pleguezuelo, C. R., Franco Tarifa, D., Francia Martínez, J. R., Gálvez Ruíz, B., Mamani Pati, F., García Tejero, I. F., & Durán Zuazo, V. H. (2017). Dinâmica das concentrações de carbono e nitrogênio na decomposição do folhedo de cultivos subtropicais do sudeste da Espanha. Revista De Ciencias Ambientales, 52(1), 175-189. https://doi.org/10.15359/rca.52-1.10

Edição

Seção

Notas técnicas

Como Citar

Rodríguez Pleguezuelo, C. R., Franco Tarifa, D., Francia Martínez, J. R., Gálvez Ruíz, B., Mamani Pati, F., García Tejero, I. F., & Durán Zuazo, V. H. (2017). Dinâmica das concentrações de carbono e nitrogênio na decomposição do folhedo de cultivos subtropicais do sudeste da Espanha. Revista De Ciencias Ambientales, 52(1), 175-189. https://doi.org/10.15359/rca.52-1.10

Comentarios (ver términos de uso)

Artigos Semelhantes

11-20 de 573

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)