Response of spectral wave models under extreme wind conditions in the Gulf of Mexico

  • Rodney Eduardo Mora Escalante Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Escuela de Física, Sede Rodrigo Facio, Universidad de Costa Rica. Módulo de Información Oceanográfica (MIO), Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica.
  • Omar Gerardo Lizano Rodríguez Centro de Investigación en Ciencias del Mar y Limnología (CIMAR). Módulo de Información Oceanográfica (MIO), Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica.
Keywords: significant wave height, Gulf of Mexico, hurricane, SWAN, WAVEWATCH III


Two numerical wave models were evaluated in extreme wind conditions: a deep-water wave model, WAVEWATCH III, and a shallow water wave model, SWAN. The general objective of the research is to assess the performance of these two spectral wave models to represent the wave height under hurricane conditions with two kinds of wind models: parametric and dynamic. Four experiments were conducted with major historical hurricanes that crossed the Gulf of Mexico (Lili 2002, Ivan 2004, Rita 2005, and Gustav 2008). In order to compare results from the models, in-situ data of wind speed and significant wave height was obtained from the National Data Buoy Center and evaluated using statistical parameters. Results showed that, by using the parametric wind field model in SWAN and WAVEWATCH III, both models tend to represent the peaks of observed significant wave height when the storm path passes close to the measuring buoy (< 400 km). Forced by the wind field of the WRF model, WAVEWATCH III tends to underestimate the peak wave height. The evaluated statistics and the time series of wind speed and wave height show that, forced by the HURWIN parametric model, SWAN and WAVEWATCH III are adequate for wave simulation under major hurricane conditions.


Download data is not yet available.


Amante, C. & Eakins, B. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. EE. UU.: National Geophysical Data Center.
Booij, N., Ris, R. C. & Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans (1978-2012), 104, 7649-7666.
Braun, S. A. & Tao, W.-K. (2000). Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Weather Rev., 128(12), 3941-3961.<3941:SOHRSO>2.0.CO;2
Chen, W. B., Chen, H., Hsiao, S. C., Chang, C. C. & Lin, L. Y. (2019). Wind forcing effect on hindcasting of typhoon-driven extreme waves. Ocean Eng., 188, 106260.
Collins, J. I. & Viehnaman, J. (1971). A simplified empirical model for hurricane wind fields. EE. UU.: Offshore Technology Conference.
Davis, C., Wang, W., Chen, S. S., Chen, Y., Corbosiero, K., DeMaría, M., … & Michalakes, J. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF Model. Mon. Wea. Rev., 136(6), 1990-2005.
Ding, Y., Ding, T., Rusdin, A., Zhang, Y. & Jia, Y. (2020). Simulation and prediction of storm surges and waves using a fully integrated process model and a parametric cyclonic wind model. J. Geophys. Res. Oceans, 125.
Emanuel, K. & Rotunno, R. (2011). Self-Stratification of Tropical Cyclone Outflow. Part I: Implications for Storm Structure. J. Atmos. Sci., 68, 2236-2249.
Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea Rev., 108(8), 1212-1218.<1212:AAMOTW>2.0.CO;2
Holland, G. J., Belanger, J. I. & Fritz, A. (2010). A revised model for radial profiles of hurricane winds. Mon. Wea. Rev., 138(12), 4393-4401.
Holthuijsen, L. H. (2010). Waves in oceanic and coastal waters. EE. UU.: Cambridge University Press.
Hu, K., Chen, Q. & Kimball, S. K. (2012). Consistency in hurricane surface wind forecasting: an improved parametric model. Nat. Hazards, 61, 1029-1050.
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. (1994). Dynamics and Modelling of Ocean Waves. EE. UU.: Cambridge University Press.
Jelesnianski, C. (1974). Splash (special program to list amplitudes of surges from hurricanes). Part II: General tracks and variants storm conditions. EE. UU.: NOAA, Tech. Mem., NWS TDL-52.
Landsea, C. W. & Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141(10), 3576-3592.
Lizano, O. G. (1990). Un modelo de viento ajustado a un modelo de generación de olas para el pronóstico de oleaje durante huracanes. Rev. Geofísica, 33, 76-103.
Lizano, O. G. & Moya, R. (1990). Simulación de oleaje durante el huracán Joan (1988) a su paso por el mar Caribe de Costa Rica. Rev. Geofísica, 33, 105-126.
Lizano, O. G., Ocampo, F. J., Gamboa, A., Fernando, L., Vega, R. & Puig, J. M. (2001). Evaluación de modelos numéricos de tercera generación para el pronóstico del oleaje en Centroamérica y México. Top. Meteor. Oceanogr., 8(1), 40-49.
Lizano, O. G. (2006). Simulación de oleaje de huracán usando modelos de viento paramétricos en un modelo de olas de tercera generación. Bol. Científ. CIOH, 24, 36-47.
Lizano, O. G. & Mora-Escalante, R. (2019). Simulación de las condiciones oceanográficas de los huracanes que han pasado más cerca de Costa Rica. Rev. Torno Prev. CNE, (22), 21-31.
Montoya, R. D., Arias, A. O., Royero, J. O. & Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Eng., 67, 100-118.
Moon, I. J., Ginis, I., Hara, T., Tolman, H. L., Wright, C. & Walsh, E. J. (2003). Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33(8), 1680-1706.
Mooney, P., Gill, D., Mulligan, F. & Bruyère, C. (2016). Hurricane simulation using diferent representations of atmosphere-ocean interaction: the case of Irene (2011). Atmo. Sc. Lett., 17(Issue 7), 415-421.
Olfateh, M., Callaghan, D. P, Nielsen, P. & Baldock, T. E. (2017). Tropical cyclone wind field asymmetry-development and evaluation of a new parametric model. J. Geophys. Res. Oceans, 122(1), 458-469.
Ortiz-Royero, J. C., Martínez, F. L, Estrada, E. D. & Arango, L. F. (2008). Estudio del oleaje generado por el huracán Joan en la costa caribe colombiana en 1988, incluyendo a la Isla Andrés. Rev. Colomb. Fís., 40(2), 444-446.
Ortiz-Royero, J. C. & Mercado-Irizarry, A. (2008). An Intercomparison of Swan and Wavewatch III Models with Data from NDBC-NOAA Buoys at Oceanic Scales. Coast. Eng. J., 50(1), 47-73.
Rogers, R., Chen, S., Tenerelli, J. & Willoughby, H. (2003). A numerical study of the impact of vertical shear on the distribution of rainfall in hurricane bonnie (1998). Mon. Wea Rev., 131(8), 1577-1599.
Ruiz-Salcines, P., Salles, P., Robles-Díaz, L., Díaz-Hernández, G., Torres-Freyermuth, A. & Appendini, C. M. (2019). On the Use of Parametric Wind Models for Wind Wave Modeling under Tropical Cyclones. Water, 11(10), 2044.
Schiller, A. & Brassington, G. B. (2011). Operational Oceanography in the 21st century. In A. Schiller & G. B. Brassington (Eds.), Ocean Forecasting. System: Product Evaluation and Skill (pp. 601-631), Netherlands: Springer.
Shao, Z., Liang, B., Li, H., Wu, G. & Wu, Z. (2018). Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Appl. Ocean Res., 71, 20-33.
Skamarock, W. C., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., … & Powers, J. (2008). A description of the advanced research wrf version 3. EE. UU.: NCAR/TN-475+STR.
Tolman, H. L. (2014). User manual and system documentation of WAVEWATCH III version 4.18. EE.UU.: NOAA/NWS/NCEP/MMAB Tech. Note 316.
Tolman, H. L. & Chalikov, D. (1996). Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26(11), 2497-2518.<2497:STIATG>2.0.CO;2
Vickery, P. J. & Wadhera, D. (2008). Statistical models of holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind Data. J. Appl. Meteorol. Climatol., 47(10), 2497-2517.
Willoughby, H. E. & Rahn, M. E. (2004). Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) Model. Mon. Wea Rev., 132(12), 3033-3048.
Yaghoobi Kalourazi, M., Mostafa Siadatmousavi, S., Yeganeh-Bakhtiary, A. & Jose, F. (2020). Simulating tropical storms in the Gulf of Mexico using analytical models. Oceanologia, 62(2), 173-189.
Young, I. R. (2017). A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation. Atmosphere, 8(10), 194.
How to Cite
Mora Escalante, R., & Lizano Rodríguez, O. (2020). Response of spectral wave models under extreme wind conditions in the Gulf of Mexico. Journal of Marine and Coastal Sciences, 12(2), 73-93.

Comentarios (ver términos de uso)