Photoprotective and photorepair action of marine angiosperm extracts, <i>Thalassia testudinum</i> Banks ex König (Hyrocharitacea) and <i>Syringodium filiforme</i> Kützing (Cymodoceaceae)

  • Adrián Fagundo Mollineda Departamento de Farmacología Centro de Bioproductos Marinos (CEBIMAR)
  • María Rodríguez García Centro de Bioproductos Marinos (CEBIMAR) Departamento de Farmacología
  • Kethia L. González García Centro de Bioproductos Marinos (CEBIMAR) Departamento de Química
  • Olga Valdés Iglesias Centro de Bioproductos Marinos (CEBIMAR) Departamento de Química
  • Yasnay Hernández Rivera Centro de Bioproductos Marinos (CEBIMAR) Departamento de Química
  • Ángel R. Concepción Alfonso Instituto Superior de Ciencias Médicas “Victoria de Girón”
  • Odalys Valdés Martínez Departamento de Control Biológico del CIDEM
Keywords: Thalassia, Syringodium, radiation, photoprotection, skin


Previous studies with the aqueous-ethanol extracts obtained from the marine angiosperms T. testudinum and S. filiforme have shown their high polyphenolic content and marked antioxidant capacity. This study describes the effects of the topical application of the aqueous-ethanol extracts of T. testudinum and S. filiforme leaves against acute UVB-induced damage. The phanerogams used were collected 3-4m deep in La Habana’s northwestern coast. Five experimental groups were created for the administration of the treatment. The effect was evaluated in in vivo assays, radiating the skin of the dorsal region of albino mice with UVB (dose: 1.21x103 Jxcm2) for six minutes. Before or after UVB irradiation, animals received topical treatment with the extracts at doses of both angiosperms 500μg x cm2 on their skin. Significant differences were observed (P ≤ 0.05) between groups: T. testudinum, S. filiforme, irradiated subjects, and “placebo”. T. testudinum and S. filiforme extracts reduce macroscopic damage caused by UVB radiation in irradiated skins on preventive and photodamage models. In addition, these extracts show protective and repair effects against UVB radiation damage, which could be related to their antioxidant action.


Download data is not yet available.


Aneiros, A. A., Concepción, A. R., Arteaga, S., Fundora, M. D., Fernández, A., Mata, M., … & Rodríguez, M. (2003). Extracto de planta marina con actividad antienvejecimiento, antiinflamatoria y analgésica, su obtención y formulaciones que lo contienen. No 22931. Habana, Cuba: Oficina Cubana de la Propiedad Industrial.

Bickers, R. D. (2004). Photosensitivity and others reactions to light. In McGraw-Hil (Eds.), Harrison’s Principles of Internal Medicine (pp. 324-329). New York, EE. UU.: McGraw-Hill.

Choquenet, B., Couteau, C., Paparis, E. & Coiffard, L. J. M. (2008). Quercetin and Rutin as Potential Sunscreen Agents: Determination of Efficacy by an in Vitro Method. J. Nat. Prod., 71, 1117-1118.

Fisher, G., Quan, T., Purohit, J. T., Shao, Y., Cho, M. K., He, T., ... & Voorhees, J. J. (2009). Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol., 23, 101-114.

González, K., Valdés-Iglesias, O., Laguna, A., Díaz, M. & González, J. (2011). Efecto antioxidante y contenido polifenólico de Syringodium filiforme (Cymodoceaceae). Rev. Biol Trop., 59(1), 465-472.

Karol, M. H. (2009). How environmental agents influence the aging process. Biomol. Ther., 17, 113-124.

Liou, T. G. & Campbell, E. J. (1995). Nonisotropic enzyme--inhibitor interactions: a novel nonoxidative mechanism for quantum proteolysis by human neutrophils. Biochemistry, 34, 16171-16177.

Mc Milan, C. & Zapata, O. (1980). Sulphated phenolic compounds in seagrasses. Aquatic. Bot., 8, 267-278.

Mora, M., Olivares, A. R., González, T. & Castro, M. I. (2010). El sol: ¿enemigo de nuestra piel? Medisan, 14, 525-537.

Narayanan, D. L., Saladi, R. N. & Fox, J. L. (2010). Ultraviolet radiation and skin cancer. Int. J. Dermatol., 49, 978-986.

Nussier, G., Rezzonico, B. & Grignon-Dubois, M. (2010). Chiroquid acid from Syringodium filiforme. Food. Chem., 120, 783-788.

Regalado, E. L., Roberto, M., Valdés, O., Morales, R. A., Laguna, A., Thomas, O. P., ... & Kijoad, A. (2012). Phytoquimical Analysis and Antioxidant Capacity of BM-21 a Bioactive Extract Rich in Polyphenolic Metabolites From de Sea Grass Thalassia testudinum. Mar. Biotechnol., 7, 47-50.

Regalado, E. L., Rodríguez, M., Menéndez, R., Concepción, A. R., Nogueiras, C., Laguna, A., ... & Hernández, Y. (2009). Repair of UVB-damaged skin by the antioxidant sulphated flavone glycoside thalassiolin B isolated from the marine plant Thalassia testudinum Banks ex König. Mar. Biotechnol., 11, 74-80.

Rodríguez, M., Tamayo, B. & Garateix, A. (2010). Los Organismos Marinos y los Cosméticos. Rev. Elec. Agen. Med. Amb., 19, 1-7.

Sánchez, F. (2006). Consideraciones sobre la capa de ozono y su relación con el cáncer de piel. Rev. Med. Chile, 134, 1185-1190.

Seité, S., Fourtanier, A., Moyal, D. & Young, A. R. (2010). Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review. Brit. J. Dermatol., 163, 903-914.

SPSS. (2006). Statistical Package for the social science for Windows, version 15.0. Chicago, EE. UU.: SPSS Inc.

Svobodová, A., Psotová, J. & Walterová, D. (2003). Natural phenolics in the prevention of UV-¬induced skin damage. A review. Biomed., 147, 137-145.

Trautinger, F. (2001). Mechanisms of photodamage of the skin and its functional consequences for skin agening. Clin. Exp. Dermatol., 26, 573-577.

Zapata, O. & Mc Milan, M. (1979). Phenolic acid in seagrasses. Aquatic. Bot., 7, 307-317.

How to Cite
Fagundo Mollineda, A., Rodríguez García, M., González García, K. L., Valdés Iglesias, O., Hernández Rivera, Y., Concepción Alfonso, Ángel R., & Valdés Martínez, O. (2015). Photoprotective and photorepair action of marine angiosperm extracts, <i>Thalassia testudinum</i> Banks ex König (Hyrocharitacea) and <i>Syringodium filiforme</i&gt; Kützing (Cymodoceaceae). Journal of Marine and Coastal Sciences, 8(1), 51-62.

Comentarios (ver términos de uso)