Accurate Symmetry Calculation with Normalized Dynamic Time Warping Gait Symmetry Ratio




Wearable Device, Symmetry, Time Series, Dynamic Time Warping (DTW), Gait Asymmetry


In this paper we propose a new method for symmetry calculation in wearable devices. The problem in this domain is that only discrete features such as stride length, stride duration, or duration of gait phases are used for the symmetry calculation. However, this can lead to failures, since the use of features can result in partial loss of information from the time series. From this we present a possibility to calculate the symmetry by using Dynamic Time Warping (DTW). DTW uses the complete time series for the analysis and is therefore independent of certain features.


Andres, R. O., & Stimmel, S. K. (1990). Prosthetic alignment effects on gait symmetry: a case study. Clinical biomechanics, 5(2), 88-96.

Ashhar, K., Soh, C. B., & Kong, K. H. (2017). A wearable ultrasonic sensor network for analysis of bilateral gait symmetry. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4455-4458). IEEE.

Blazkiewicz, M., Wiszomirska, I., & Wit, A. (2014). Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta of bioengineering and biomechanics, 16(1).

Crea, S., Cipriani, C., Donati, M., Carrozza, M. C., & Vitiello, N. (2014). Providing time-discrete gait information by wearable feedback apparatus for lower-limb amputees: usability and functional validation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(2), 250-257.

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23).

Hannink, J., Kautz, T., Pasluosta, C. F., Barth, J., Schülein, S., Gaßmann, K.-G., Klucken, J., & Eskofier, B. M. (2018). Mobile Stride Length Estimation With Deep Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(2), 354-362.

Hassan, M., Kadone, H., Suzyki, K., & Sankai, Y. (2014). Wearable gait measurement system with an instrumented cane for exoskeleton control. Sensors, 14(1), 1705-1722.

Herzog, W., Nigg, B. M., Read, L. J., & Olsson, E. (1989). Asymetries in ground reaction force patterns in nomral human gait. Med Sci Sports Exerc, 21(1), 110–114.

Hubble, R. P., Naughton, G. A., Silburn, P. A., & Cole, M. H. (2015). Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PloS one, 10(4).

Jelén, P., Wit, A., Dudzinski, K., & Nolan, L. (2008). Expressing gait-line symmetry in able-bodied gait. Dynamic Medicine, 7(1), 17.

Jiang, X., Tory, L., Khoshnam, M., Chu, K. H. T., & Menon, C. (2018). Exploration of Gait Parameters Affecting the Accuracy of Force Myography-Based Gait Phase Detection. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 1205-1210).

Keogh, E. J., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowl. Inf. Syst, 7(3).

Lauziere, S., Betschart, M., Aissaoui, R., & Nadeau, S. (2014). Understanding spatial and temporal gait asymmetries in individuals post stroke. Int J Phys Med Rehabil, 2(3), 201.

Liao, F., Wang, J., & He, P. (2008). Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Medical engineering & physics, 30(3), 299-310.

Patterson, K. K., Gage, W. H., Brooks, D., Black, S. E., & Mcllroy, W. E. (2010). Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait & posture, 31(2), 241-246.

Plotnik, M., Giladi, N., & Hausdorff, J. M. (2007). A new measure for quintifying the bilateral coordination of human gait: effects of aging and Parkinson’s disease. Experimental brain research, 181(4), 561-570.

Sadeghi, H., Allard, P., Prince, F., & Labelle, H. (2000). Symmetry and limb dominance in able-bodied gait: a review. Gait & posture, 12(1), 34-45.

Steinmetzer, T., Bönninger, I., Reckhardt, M., Reinhardt, F., Erk, D., & Travieso, C. M. (2020). Comparison of algorithms and classifiers for stride detection using wearables. Neural Computing and Applications, 32(24), 17857-17868.

Steinmetzer, T., Wilberg, S., Bönninger, I., & Travieso, C. M. (2020). Analyzing gait symmetry with automatically synchronized wearable sensors in daily life. Microprocessors and Microsystems, 77, 103118.

Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10(8), 7772-7788.

Yang, C. C., Hsu, Y. L., Lu, J. M., Shih, K. S., & Chan, L. (2011. June). Real-time gait cycle parameters recognition using a wearable motion detector. In Proceedings 2011 International Conference on System Science and Engineering (pp. 498-502). IEEE.

Zifchock, R. A., Davis, I., Higginson, J., & Royer, T. (2008). The symmetry angle: a novel, robust method of quantifying asymmetry. Gait & posture, 27(4), 622-627.



How to Cite

Accurate Symmetry Calculation with Normalized Dynamic Time Warping Gait Symmetry Ratio. (2022). Uniciencia, 36(1), 1-8.



Original scientific papers (evaluated by academic peers)

How to Cite

Accurate Symmetry Calculation with Normalized Dynamic Time Warping Gait Symmetry Ratio. (2022). Uniciencia, 36(1), 1-8.

Comentarios (ver términos de uso)

Most read articles by the same author(s)