Prospective high school mathematics teachers’ didactic-mathematical knowledge about the sampling distribution of the mean




distribution of the sample mean, didactic-mathematical knowledge, prospective high-school teachers, evaluation


[Objective] The aim of this study is to evaluate the didactic-mathematical knowledge of prospective Spanish teachers about the sampling distribution of the mean – specifically, basic knowledge about content, as well as epistemic and cognitive aspects of didactic knowledge. [Methodology] A sample of prospective teachers were asked to solve a problem presented to students in the university’s entrance exams, to identify the concepts, properties and procedures required for its solution, and to describe the foreseeable errors of the students in this process. [Results] The results obtained showed very good levels of common mathematical knowledge, although some errors were observed, such as confusing population distributions with sampling distributions. The participants were reasonably competent in analyzing the mathematical objects (concepts, procedures and properties) required to solve the proposed task, but the level of competence in identifying possible student errors in solving the task was lower. [Conclusions] The study identifies areas for improvement in the training of prospective teachers about the sampling distribution of the mean, which should be well understood when making inferences. Such training should emphasize the difference between the three probability sampling distributions and the difference between statistics and parameters, since prospective teachers do not recognize the possibility of this type of error by their students.


Abu-Ghalyoun, O. (2021). Pre-service teachers’ difficulties in reasoning about sampling variability. Educational Studies in Mathematics, 108(3), 553-577.

Batanero, C., Begué, N., Borovcnik, M., & Gea, M. M. (2020). Ways in which high-school students understand the sampling distribution for proportions. Statistics Education Research Journal, 19(3), 32-52.

Batanero, C., López-Martín, M. M., Gea, M. M., & Arteaga, P. (2018). Conocimiento del contraste de hipótesis por futuros profesores de educación secundaria y bachillerato. Publicaciones, 48(2), 73-95.

Batanero, C., Tauber, L. M., & Sánchez, V. (2004). Students’ reasoning about the normal distribution. En D. Ben-Zvi, & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 257-276). Springer.

Begué, N., Batanero, C., Ruiz, K., & Gea, M. M. (2019). Understanding sampling: A summary of the research. Boletín de Estadística e Investigación Operative, BEIO, 35(1), 49-78.

Beswick, K., & Goos, M. (2018). Mathematics teacher educator knowledge: What do we know and where to from here? Journal of Mathematics Teacher Education, 21(5), 417-427.

Espinel, M. C., Ramos, R. M., & Ramos, C. E. (2007). Algunas alternativas para la mejora de la enseñanza de la inferencia estadística en Secundaria. Números. Revista de Didáctica de las Matemáticas, 67, 15-23.

Gal, I., & Geiger, V. (2022). Welcome to the era of vague news: a study of the demands of statistical and mathematical products in the COVID-19 pandemic media. Educational Studies in Mathematics, 111, 5-28.

Godino, J. D. (2009). Categorías de análisis de conocimientos del profesor de matemáticas. Unión, 20, 13-31.

Godino, J., Batanero, C., & Font, V. (2007). The ontosemiotic approach to research in mathematics education. ZDM - Mathematics Education, 39(12), 127-135.

Godino, J., Batanero, C., & Font, V. (2019). The ontosemiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 38-43.

Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90-113.

González, Y., & Ojeda, A. M. (2017). Comprensión de la distribución normal en bachillerato. En L. A. Serna (Ed.), Acta Latinoamericana de Matemática Educativa (pp. 207-217). Comité Latinoamericano de Matemática Educativa.

Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem students share with their teachers? Methods of Psychological Research, 7(1), 1-20.

Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers’ knowledge of sampling and inference. En C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-Challenges for teaching and teacher education (pp. 235-246). Springer.

Inzunsa, S., & Jiménez, J. V. (2013). Caracterización del razonamiento estadístico de estudiantes universitarios acerca de las pruebas de hipótesis. Revista Latinoamericana de Investigación en Matemática Educativa, 16(2), 179-211.

Kula, F., & Koçer, R. G. (2020). Why is it difficult to understand statistical inference? Reflections on the opposing directions of construction and application of inference framework. Teaching Mathematics and its Applications, 39(4), 248-265.

Llinares, S. (2018). Mathematics teacher’s knowledge, knowledge-based reasoning, and contexts. Journal of Mathematics Teacher Education, 21(1), 1-3.

Liu, Y., & Thompson, P. W. (2009). Mathematics teachers’ understandings of proto-hypothesis testing. Pedagogies: An International Journal, 4(2), 126-138.

López-Martín, M. M., Batanero, C., & Gea, M. M. (2019). ¿Conocen los futuros profesores los errores de sus estudiantes en la inferencia estadística? Bolema: Boletim de Educação Matemática, 33, 672-693.

Lugo-Armenta, J. G., & Pino-Fan, L.R. (2021). Inferential statistical reasoning of math teachers: experiences in virtual contexts generated by the COVID-19 pandemic. Education Sciences, 11, 363.

Makar K., & Rubin A. (2018) Learning about statistical inference. En D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), International Handbook of Research in Statistics Education. Springer International Handbooks of Education.

Mendenhall, W., Scheaffer, R. L., & Lyman, R. (2006). Elementos de muestreo. Paraninfo.

Ministerio de Educación, Cultura y Deporte. (2015). Real decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la educación secundaria obligatoria y del bachillerato. MECD.

Ministerio de Educación y Formación Profesional. (2022). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. MEFP.

Muñiz-Rodríguez, L., Alonso, P., Rodríguez-Muñiz, L. J., & Valcke, M. (2016). Is there a gap in initial secondary mathematics teacher education in Spain compared to other countries? Revista de Educación, 372, 106–132.

Onyancha, B. N., & Ogbonnaya, U. I. (2022). Undergraduate students’ proficiencies in solving bivariate normal distribution problems. Journal of Pedagogical Sociology and Psychology, 4(1), 20-34.

Pino-Fan, L. R., & Godino, J. D. (2015). Perspectiva ampliada del conocimiento didáctico-matemático del profesor. Paradigma, 36(1), 87-109.

Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers' didactic-mathematical knowledge. EURASIA Journal of Mathematics, Science and Technology Education, 11(6), 1429-1456.

Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2019). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 17(1), 153-172.

De Vetten, A., Schoonenboom, J., Keijzer, R., & Van Oers, B. (2018). Pre-service primary school teachers’ knowledge of informal statistical inference. Journal of Mathematics Teacher Education, 22(6), 639–661.

Vallecillos, A. (1999). Some empirical evidence on learning difficulties about testing hypotheses. Bulletin of the International Statistical Institute: Proceedings of the Fifty second Session of the International Statistical Institute (pp. 201-204). International Statistical Institute

Watson, J. M., & Callingham, R. (2013). Likelihood and sample size: The understandings of students and their teachers. The Journal of Mathematical Behavior, 32(3), 660–672.

Weiland, T. (2017). Problematizing statistical literacy: An intersection of critical and statistical literacies. Educational Studies in Mathematics, 96(1), 33–47.



How to Cite

Prospective high school mathematics teachers’ didactic-mathematical knowledge about the sampling distribution of the mean. (2023). Uniciencia, 37(1), 1-20.



Original scientific papers (evaluated by academic peers)

How to Cite

Prospective high school mathematics teachers’ didactic-mathematical knowledge about the sampling distribution of the mean. (2023). Uniciencia, 37(1), 1-20.

Comentarios (ver términos de uso)