Creation of proportionality problems for the training of prospective primary school teachers
DOI:
https://doi.org/10.15359/ru.37-1.14Keywords:
Problem creation, proportionality, didactic-mathematical knowledge, teacher educationAbstract
[Objective] This article presents a description and analysis of an educational experience with prospective primary school teachers, aimed at developing their skills to create proportionality problems by modifying an initial problem to reflect a didactic-mathematical orientation. [Methodology] This is a qualitative and interpretative investigation that adopted an engineering or design approach to teaching in its research methodology. Theoretical and methodological tools of the Onto-semiotic Approach were used in both the design of the experience, and in the content analysis of participants’ responses. The investigation was carried out with a group of 127 Primary Education students of the University of Granada, Spain, organized in 33 teams to answer two problem-creation tasks. [Results] It was found that the participants most frequently created relevant problems by modifying a given problem, but that they did not manage to create problems that specifically allowed them to distinguish proportional from additive situations that are consistent with didactic-mathematical requirements. [Conclusions] Prospective teachers did not display sufficient didactic and mathematical knowledge to be able to successfully create proportionality problems. Training programs should therefore strengthen their strategies to develop this knowledge, incorporating it as a didactic resource in the teaching process to assist in improving the skills of prospective teachers in the analysis of mathematical activities.
References
Aroza, C. J., Godino, J. D. y Beltrán-Pellicer, P. (2016). Iniciación a la innovación e investigación educativa mediante el análisis de la idoneidad didáctica de una experiencia de enseñanza sobre proporcionalidad. AIRES, 6, 6(1). http://enfoqueontosemiotico.ugr.es/documentos/Aroza_Godino_Beltran.pdf
Ayllón, M. F., Gallego, J. L., y Gómez, I. A. (2016). La actuación de estudiantes de educación primaria en un proceso de invención de problemas. Perfiles Educativos, 38(152), 51–67. https://doi.org/10.22201/iisue.24486167e.2016.152.57588
Balderas, R. G., Block, D. y Guerra, M. T. (2014). “Sé cómo se hace, pero no por qué": Fortalezas y debilidades de los saberes sobre la proporcionalidad de maestros de secundaria. Educación Matemática, 26(2), 7–32.
Begolli, K. N., Dai, T., McGinn, K. M. y Booth, J. L. (2021) Could probability be out of proportion? Self-explanation and example-based practice help students with lower proportional reasoning skills learn probability. Instructional Science, 49, 441–473. https://doi.org/10.1007/s11251-021-09550-9
Beltrán-Pellicer, P. y Godino, J. D. (2020). An onto-semiotic approach to the analysis of the affective domain in mathematics education. Cambridge Journal of Education, 50(1), 1–20. https://doi.org/10.1080/0305764X.2019.1623175
Ben-Chaim, D., Keret, Y. e Ilany, B. S. (2012). Ratio and proportion: Research and teaching in mathematics teachers’ education. Sense Publisher. https://link.springer.com/book/10.1007/978-94-6091-784-4
Bonotto, C. (2013). Artifacts as source for problem-posing activities. Educational Studies in Mathematics, 83(1), 37–55. https://doi.org/10.1007/s10649-012-9441-7
Breda, A., Pino-Fan, L. R. y Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. EURASIA Journal of Mathematics, Science and Technology Education, 13(6), 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
Buforn, A. y Fernández, C. (2014). Conocimiento de matemáticas especializado de los estudiantes para maestro de primaria en relación al razonamiento proporcional. BOLEMA, 28(48), 21–41. https://doi.org/10.1590/1980-4415v28n48a02
Buforn, A., Llinares, S. y Fernández, C. (2018). Características del conocimiento de los estudiantes para maestro españoles en relación con la fracción, razón y proporción. RMIE, 23(76), 229–251.
Burgos, M. y Godino, J. D. (2020). Prospective primary school teachers’ competence for analysing the difficulties in solving proportionality problem. Mathematics Education Research Journal, 34. https://doi.org/10.1007/s13394-020-00344-9
Burgos, M. y Godino, J. D. (2021). Conocimiento didáctico-matemático de la proporcionalidad en futuros maestros de educación primaria. Profesorado. Revista De Currículum Y Formación Del Profesorado, 25(2), 281–306. https://doi.org/10.30827/profesorado.v25i2.8725
Burgos, M. y Godino, J. D. (2022). Assessing the epistemic analysis competence of prospective primary school teachers on proportionality tasks. International Journal of Science and Mathematics Education, 20, 367–389. https://doi.org/10.1007/s10763-020-10143-0
Burgos, M., Beltrán-Pellicer, P., Giacomone, B. y Godino, J. (2018). Conocimientos y competencia de futuros profesores de matemáticas en tareas de proporcionalidad. Educação e Pesquisa, 44, 1–22. https://doi.org/10.1590/s1678-4634201844182013
Calvo, M. (2008). Enseñanza eficaz de la resolución de problemas en matemáticas. Revista Educación, 32(1), 123–138. https://doi.org/10.15517/revedu.v32i1.527
Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D. y Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM – Mathematics Education, 37(3), 149–158. https://doi.org/10.1007/s11858-005-0004-6
Cohen, L., Manion, L. y Morrison, K. (2018). Research methods in education (8va ed.). Routledge. https://doi.org/10.4324/9781315456539
Contreras, J. (2007). Unraveling the Mystery of the Origin of Mathematical Problems: Using a Problem-Posing Framework With Prospective Mathematics Teachers. The Mathematics Educator, 17(2), 15–23. https://files.eric.ed.gov/fulltext/EJ841562.pdf
Ellerton, N. F. (2013). Engaging pre-service middle-school teacher-education students in mathematical problem posing: development of an active learning framework. Educational Studies in Mathematics, 83(1), 87–101. https://doi.org/10.1007/s10649-012-9449-z
Espinoza, J. (2017). La resolución y planteamiento de problemas como estrategia metodológica en clases de matemática. Atenas, 3(39), 64–72.
Espinoza, J., Lupiáñez, J. y Segovia, I. (2014). La invención de problemas y sus ámbitos de investigación en educación matemática. Revista digital matemática, 14(2), 1–12. http://dx.doi.org/10.18845/rdmei.v14i2.1664
Espinoza, J., Lupiáñez, J. y Segovia, I. (2016). La invención de problemas aritméticos por estudiantes con talento matemático. Electronic Journal of Research in Educational Psychology, 14(2), 368–392. https://doi.org/10.14204/ejrep.39.15067
Fernández, C. y Llinares, S. (2011). De la estructura aditiva a la multiplicativa: Efecto de dos variables en el desarrollo del razonamiento proporcional. Infancia y Aprendizaje, 34(1), 67–80. https://doi.org/10.1174/021037011794390111
Fernández, C. y Llinares, S. (2012) Características del desarrollo del razonamiento proporcional en la Educación Primaria y Secundaria. Enseñanza de las Ciencias, 30(1), pp. 129–142. https://doi.org/10.5565/rev/ec/v30n1.596
Fernández, C., Llinares, S. y Valls, J. (2012). Learning to notice students’ mathematical thinking through online discussions. ZDM. Mathematics Education, 44(6), 747–759. https://doi.org/10.1007/s11858-012-0425-y
Fernández-Millán, E. y Molina, M. (2016). Indagación en el conocimiento conceptual del simbolismo algebraico de estudiantes de secundaria mediante la invención de problemas. Enseñanza de las Ciencias, 34(1), 53–71. https://doi.org/10.5565/rev/ensciencias.1455
Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127–135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Giacomone, B., Batanero, C. y Font, V. (2017). Enfoque ontosemiótico de los conocimientos y competencias del profesor de matemáticas. Bolema, 31(57), 90–113. https://doi.org/10.1590/1980-4415v31n57a05
Godino, J. D., Rivas, H., Arteaga, P., Lasa, A. y Wilhelmi, M. R. (2014). Ingeniería didáctica basada en el enfoque ontológico - semiótico del conocimiento y la instrucción matemáticos. Recherches en Didactique des Mathématiques, 34(2–3), 167–200.
https://hal.archives-ouvertes.fr/hal-01289630/document
Kiliç, Ç. (2013). Determining the Performances of Pre-Service Primary
School Teachers in Problem Posing Situations. Educational Sciences: Theory & Practice, 13(2), 1207–1211. https://files.eric.ed.gov/fulltext/EJ1017363.pdf
Koichu, B. y Kontorovich, I. (2013). Dissecting success stories on mathematical problem posing: a case of the Billiard Task. Educational Studies in Mathematics 83, 71–86 (2013). https://doi.org/10.1007/s10649-012-9431-9
Kwek, M. L. (2015). Using problem posing as a formative assessment tool. En F. Singer, N. Ellerton y J. Cai (Eds.), Mathematical problem posing: from research to effective practice (pp. 273–292). Springer. https://doi.org/10.1007/978-1-4614-6258-3_13
Lamon, S. (2007). Rational number and proportional reasoning. Toward a theoretical framework for research. En F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629–667). Information Age Pub Inc.
Lundberg, A. (2011). Proportion in mathematics textbooks in upper secondary school. En M. Pytlak,T. Rowland y E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for research in mathematics education (pp. 336–345). University of Rzeszów.
Malaspina, U. (2016). Creación de problemas: Sus potencialidades en la enseñanza y aprendizaje de las matemáticas. En A. Ruiz (Ed.), Cuadernos de Investigación y Formación en Educación Matemática (pp. 321–331). Universidad de Costa Rica.
Malaspina, U., Mallart, A. y Font, V. (2015). Development of teachers' mathematical and didactic competencies by means of problem posing. En K. Krainer y N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 2861–2866). Proceedings of the CERME 9.
Malaspina, U., Torres, C. y Rubio, N. (2019). How to stimulate in-service teachers’ didactic analysis competence by means of problem posing. En P. Liljedahl, y L. Santos-Trigo (Eds.), Mathematical Problem Solving (pp. 133–151). Springer. https://doi.org/10.1007/978-3-030-10472-6_7
Mallart, A., Font, V. y Diez, J. (2018). Case Study on Mathematics Pre-service Teachers’ Difficulties in Problem Posing. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1465–1481. https://doi.org/10.29333/ejmste/83682
Mallart, A., Font, V. y Malaspina, U. (2016). Reflexión sobre el significado de qué es un buen problema en la formación inicial de maestros. Perfiles educativos, 38(152), 14–30. https://doi.org/10.22201/iisue.24486167e.2016.152.57585F
Milinković, J. (2015). Conceptualizing Problem Posing via Transformation. En J. Cai, N. Ellerton, y F.M. Singer (Eds.), Mathematical Problem Posing: From Research to Effective Practice, (pp. 47–70). New York: Springer. https://doi.org/10.1007/978-1-4614-6258-3_3
Ministerio de Educación Pública (2012). Programas de estudio de matemáticas. San José, Costa Rica. https://www.mep.go.cr/sites/default/files/programadeestudio/programas/matematica.pdf
Mochón, S. (2012). Enseñanza del razonamiento proporcional y alternativas para el manejo de la regla de tres. Educación Matemática, 24(1), 113–157. http://www.scielo.org.mx/pdf/ed/v24n1/v24n1a6.pdf
Moreno, K. M., Rey, M. P, Torres, P. L. y Pinilla, L. M. (2015). La resolución de problemas: Estrategia metodológica para aprender y enseñar matemáticas en la media especializada del Colegio Reino de Holanda [Tesis de maestría]. Universidad Santo Tomás. https://repository.usta.edu.co/bitstream/handle/11634/3039/Pinillamaria2016.pdf?sequence=1
Pino-Fan, L. R., Báez-Huaiquián, D. I., Molina-Cabero, J. G. y Hernández-Arredondo, E. (2020). Criterios utilizados por profesores de matemáticas para el planteamiento de problemas en el aula. Uniciencia, 34(2), 114–136. https://doi.org/10.15359/ru.34-2.7
Piñeiro, J. L., Castro-Rodríguez, E. y Castro, E. (2019). Componentes de conocimiento del profesor para la enseñanza de la resolución de problemas en educación primaria. PNA 13(2), 104–129. https://doi.org/10.30827/pna.v13i2.7876
Riley, K. J. (2010). Teachers’ understanding of proportional reasoning. En P. Brosnan, D. B. Erchick, y L. Flevares (Eds.), Proceedings of the 32nd annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 6, pp. 1055–1061). The Ohio State University.
Rivas, M. A., Godino, J. D. y Castro, W. F. (2012). Desarrollo del conocimiento para la enseñanza de la proporcionalidad en futuros profesores de primaria. Bolema, 26(42b), 559–588. https://doi.org/10.1590/S0103-636X2012000200008
Şengül, S. y Katranci, Y. (2015a). The analysis of the problems posed by prospective mathematics teachers about ‘ratio and proportion’ subject. Procedia. Social and Behavioral Sciences, 174, 1364–1370. https://doi.org/10.1016/j.sbspro.2015.01.760
Şengül, S. y Katranci, Y. (2015b). Free problem posing cases of prospective mathematics teachers: Difficulties and solutions. Procedia. Social and Behavioral Sciences, 174, 1983–1990. https://doi.org/10.1016/j.sbspro.2015.01.864
Serin, M. K. (2019). Analysis of the problems posed by pre-service primary school teachers in terms of type, cognitive structure and content knowledge. International Journal of Educational Methodology, 5(4), 577-590. https://doi.org/10.12973/ijem.5.4.577
Silver, E. A. (2013). Problem-posing research in mathematics education: looking back, looking around, and looking ahead. Educational studies in mathematics, 83(1), 157–162. https://doi.org/10.1007/s10649-013-9477-3
Singer, F. y Voica, C. (2013). A problem-solving conceptual framework and its implications in designing problem-posing tasks. Educational studies in mathematics, 83(1), 9–26. https://doi.org/10.1007/s10649-012-9422-x
Singer, F., Ellerton, N. y Cai, J. (2013). Problem-posing research in mathematics education: new questions and directions. Educational studies in mathematics, 83(1), 1–7. https://doi.org/10.1007/s10649-013-9478-2
Stoyanova, E. y Ellerton, N.F. (1996). A framework for research into students’ problem posing. En P. Clarkson (Ed.), Technology in mathematics education (pp. 518–525). Mathematics Education Research Group of Australasia.
Tichá, M., y Hošpesová, A. (2013). Developing teachers’ subject didactic competence through problem posing. Educational Studies in Mathematics, 83(1), 133–143. https://doi.org/10.1007/s10649-012-9455-1
Van Dooren, W., De Bock, D., Janssens, D. y Verschaffel, L. (2008). The linear imperative: An inventory and conceptual analysis of students overuse of linearity. Journal for Research in Mathematics Education, 39(3), 311-342.
Xie, J. y Masingila, J. O. (2017). Examining Interactions between Problem Posing and Problem Solving with Prospective Primary Teachers: A Case of Using Fractions. Educational Studies in Mathematics, 96(2), 101–118. https://doi.org/10.1007/s10649-017-9760-9
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1. Authors guarantee the journal the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors can set separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. The authors have declared to hold all permissions to use the resources they provided in the paper (images, tables, among others) and assume full responsibility for damages to third parties.
4. The opinions expressed in the paper are the exclusive responsibility of the authors and do not necessarily represent the opinion of the editors or the Universidad Nacional.
Uniciencia Journal and all its productions are under Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
There is neither fee for access nor Article Processing Charge (APC)