Online GNSS processing as alternatives to different geodetic applications

  • Jorge Moya-Zamora Escuela de Topografía, Catastro y Geodesia. Universidad Nacional. Heredia, Costa Rica.
  • Sara Bastos-Gutiérrez Escuela de Topografía, Catastro y Geodesia. Universidad Nacional. Heredia, Costa Rica.
Keywords: GNSS processing online, SIRGAS, GNSS, APPS, CSRS, AUSPOS, OPUS, SOPAC


In this study a description in terms of utilization, throughput, file types and results of a series of online programs for GNSS data processing is done. At present the information that can be obtained from the GNSS systems, allows a diverse range of applications, from vehicle navigation to different studies related to terrestrial dynamics. The possibilities for use in geodesy rely exclusively on high accuracy that can be obtained by making the processing of GNSS data for scientific programs such as GAMIT and Bernese or a relative or differential work. However, they have developed a number of programs available online that provide a very suitable option for obtaining, in a short time solutions with acceptable accuracy for many tasks related to mapping, surveying, cadastre and geodesy. Some of these programs are based on technique Precise Point Positioning (PPP). The comparative study looked at a number of observation files in RINEX format were processed online programs APPS, CSRS, AUSPOS, OPUS and SCOUT. The results were analyzed in comparison with themselves, high accuracy positions given by Geocentric Reference System for the Americas ( SIRGAS ) ETCG station in addition to contemplate different satellite orbits files and processing mistakes online. Respect to alignment of the solutions according to the international framework lowest values were measured at 20 mm in the horizontal part.


Ebner, R. y Featherstone, W. E. (2008). How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?[Qué tan buenos pueden ser los servicios en línea GPS-PPP de post proceso para establecer redes de control para mediciones geodésicas]. Journal of Applied Geodesy, 2. 149–157. doi:

Ghoddousi-Fard, R. y P. Dare. (2006). Online GPS processing services: an initial study. [Servicios de procesamiento GPS en línea: un estudio inicial]. GPS Solutions 10. 12–20. doi:

Huang C., Hu X.G., Chen Z.Y. (2002). Solution of Regional GPS Network using Precise Point Positioning with Undifferenced Data.[Solución de una red GPS regional usando Posicionamiento Preciso de Punto con datos sin diferenciar]. Chinese Astronomy and Astrophysics, 42(3), 248-258.

Kouba, J. y Héroux, P. (2000). GPS Precise Point Positioning Using IGS Orbit Products.[Posionamiento de Punto Preciso usando los productos orbitales del IGS]. Geodetic Survey Division. Natural Resources Canada.

Moya, J. (2010). Implementación del Servicio de Datos GPS de la Escuela de Topografía, Catastro y Geodesia. Revista Uniciencia, 24(1), 53-61.

Moya, J., Bastos, S., Rivas, M. J. y Gamboa, G. (2014). Evaluación del comportamiento cinemático de una serie de estaciones del Sistema Geocéntrico para las Américas procesadas con Precise Point Positioning en línea. Revista Uniciencia. 28(1), 2-19.

Wang, G. Q. (2013). Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico. [Exactitud milimétrica en el monitoreo de desplizamientos usando posicionamiento de punto preciso con solución de ambigüedades de fase de receptores de una frecuencia: un caso de estudio en Puerto Rico]. Journal of Geodetic Science, 3(1), 22-31. DOI

How to Cite
Moya-Zamora, J., & Bastos-Gutiérrez, S. (2015). Online GNSS processing as alternatives to different geodetic applications. Uniciencia, 29(2), 1-14.
Original scientific papers (evaluated by academic peers)