BIBLIOMETRIC ANALYSIS OF THE USE OF GIS TOOLS IN LANDSLIDE SCENERY ON BRAZIL

Authors

DOI:

https://doi.org/10.15359/rgac.74-1.16

Keywords:

environmental catastrophes, weather events, susceptibility to landslides, geographic information systems (GIS)

Abstract

This research consists of a systematic review of articles that used Geographic Information Systems (GIS) as a way to map landslide-prone areas in Brazil or that experienced this situation. Data available for analysis in the Web Of Science and Scopus search collections were used, and the VOSViewer software was used. A methodology based on exclusion filters was applied, which allowed us to perceive a multidisciplinary approach to the theme and a concentration of published works in areas close to Serra do Mar. The results indicate a remarkable growth in this topic, with more than 60% of the papers published in the last 5 years and which were driven by the growth of research involving landslide predictions through Artificial Intelligence (AI) tools.

References

Arumugam, T; Kinattinkara, S; Velusamy, S; Shanmugamoothy, M; Murugan, S. (2023). GIS based landslide susceptibility mapping and assessment using weighted overlay method in Wayanad: A part of Western Ghats, Kerala. Urban Climate, 49, s.p. https://doi.org/10.1016/j.uclim.2023.101508

Aslam, B; Zafar, A; Khalil, U. (2023). Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Natural Hazards, 115(1), 673-707. https://doi.org/10.1007/s11069-022-05570-x

Barcellos, P; da Silva, F; Vissirini, F; Magalhães, C; Terra, J; Dutra, M; do Amaral, I. (2016). Diagnóstico meteorológico dos desastres naturais ocorridos nos últimos 20 anos na cidade de Duque de Caxias. Revista Brasileira de Meteorologia, 31(3), 319-329. https://doi.org/10.1590/0102-778631320150146

Beillouin, D; Cardinael, R; Berre, D; Boyer, A; Corbeels, M; Abigail, F; Demenois, J. (2022). A global overview of studies about land management, land‐use change, and climate change effects on soil organic carbon. Global change biology, 28(4), 1690-1702. https://doi.org/10.1111/gcb.15998

Bertotti, L. (2016). Geotecnologias aplicadas à análise ambiental. CINECA. http://repositorio.unicentro.br:8080/jspui/handle/123456789/963

Casagli, N; Intrieri, E; Tofani, V; Gigli, G; Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51-64. https://doi.org/10.1038/s43017-022-00373-x

Chen, H; Shi, Z. (2020). A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 12(10), s.p. https://doi.org/10.3390/rs12101662

Coelho, L; Nunes, A. (2020). Eventos Recentes de Chuva Intensa na Cidade do Rio de Janeiro: Análise Sinótica. Revista Brasileira de Geografia Física, 13(03), 994-1012. http://dx.doi.org/10.26848/rbgf.v13.3.p994-1012

Cruz-Muñoz, F. (2021). Patrones de expansión urbana de las megaurbes latinoamericanas en el nuevo milênio. EURE (Santiago), 47(140), 29-49. http://dx.doi.org/10.7764/eure.47.140.02

Dereczynski, C; Calado, R; Barros, A. (2017). Chuvas extremas no município do Rio de Janeiro, histórico a partir do século XIX. Anuário do Instituto de Geociências, 40(2), 17-30. http://dx.doi.org/10.11137/2017_2_17_30

Girão, Í; Rabelo, D; Zanella, M. (2018). Análise teórica dos conceitos: riscos socioambientais, vulnerabilidade e suscetibilidade. Revista de Geociências do Nordeste, 4, 71-83. https://doi.org/10.21680/2447-3359.2018v4n0ID13273

Haque, I; Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251-263. https://doi.org/10.1016/j.ejrs.2016.12.003

Hong, H; Miao, Y; Liu, J; Zhu, A-Xing. (2019). Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena, 176, 45–64. https://doi.org/10.1016/j.catena.2018.12.035

Hussain, S; Qin, S; Nasim, W; Bukhari, M; Mubeen, M; Fahad, S; Raza, A; Abdo, H; Aqil,

T; Mousa, B; Mumtaz, F; Aslam, M. (2022). Monitoring the dynamic changes in vegetation cover using spatio-temporal remote sensing data from 1984 to 2020. Atmosphere, 13(10), 1609. https://doi.org/10.3390/atmos13101609

Instituto Brasileiro de Geografia e Estatística. (2018). População em áreas de risco no Brasil. IBGE, São José dos Campos: CEMADEN. https://agenciadenoticias.ibge.gov.br/

Intergovernmental Panel on Climate Change. (2023). AR6 Synthesis Report: Climate Change 2023. IPCC. https://www.ipcc.ch/report/sixth-assessment-report-cycle/

Jacobi, P; Tavares, M; Pierro, B. (2022). O Brasil e as tragédias ambientais anunciadas: a cultura do risco e suas consequências para as cidades brasileiras. Boletín del Grupo de Trabajo Cambio ambiental global, metabolismo social local. https://www.clacso.org/wp-content/uploads/2022/07/V1_Cambio-ambiental-global_N4-1.pdf

Lousada, G; Frias, H. (2014). Desastres Ambientais, Prevenção e Mitigação: um estudo de caso na região de Angra dos Reis/ RJ. Continentes. Revista de Geografia, (5), 131-149. https://revistacontinentes.com.br/index.php/continentes/article/view/57

Mejía, V. (2020). Morfología urbana y proceso de urbanización en Ecuador a través de la imagen satelital nocturna de la Tierra, 1992-2012. EURE (Santiago), 46(138), 191-214. http://dx.doi.org/10.4067/S0250-71612020000200191

Matsuo, P; Silva, R. (2021). Desastres no Brasil? Práticas e abordagens em educação em redução de riscos e desastres. Educar em Revista, 37, 1-22. https://doi.org/10.1590/0104-4060.78161

Menezes, S; Ribeiro, C; Lima, C; Souza, M. (2017). Geotecnologias Aplicadas à Gestão Ambiental. Diversidade e Gestão, 1(1), 57-69. http://costalima.ufrrj.br/index.php/diversidadeegestao/article/view/845

Phong, T; Phan, T; Prakash I; Singh, S; Shirzadi, K; Ly, Hai-Bang; Ho, L; Quoc, N; Pham, B. (2021). Landslide susceptibility modeling using different artificial intelligence methods: A case study at Muong Lay district, Vietnam. Geocarto International, 36(15), 1685-1708. https://doi.org/10.1080/10106049.2019.1665715

Oliveira, O; Cunha, R. (2007). O Sig como ferramenta de análise da paisagem: o caso do mangue no bairro de São Domingos em Ilhéus – BA. Revista Paisagem e ambiente, (24), 39-48. https://www.revistas.usp.br/paam/article/download/85675/88436/120695

Pradhan, B. (2019). Artificial Intelligence and Spatial Modelling in Natural Hazards and Environmental Applications. In: El-Askary, H; Lee, S; Heggy, E; Pradhan, B. (eds) Advances in Remote Sensing and Geo Informatics Applications. CAJG 2018. Advances in Science, Technology & Innovation. (Springer), Cham. https://doi.org/10.1007/978-3-030-01440-7_3

Ribeiro, D; Saito, S; Dos Santos, A. (2022). Disaster vulnerability analysis of small towns in Brazil. International Journal of Disaster Risk Reduction, 68, s.p. https://doi.org/10.1016/j.ijdrr.2021.102726

Rivera-Marin, D; Dash, J; Ogutu, B. (2022). The use of remote sensing for desertification studies: A review. Journal of Arid Environments, 206, s.p. https://doi.org/10.1016/j.jaridenv.2022.104829

São Paulo. (2023). Litoral Norte de SP registrou maior acumulado de chuva da história. Governo do Estado. Defesa Civil. https://www.saopaulo.sp.gov.br/ultimas-noticias/litoral-norte-de-sp-registrou-maior-acumulado-de-chuva-da-historia-2/

Tominaga, L; Santoro, J; Amaral, R. (2015). Desastres naturais: conhecer para prevenir. 3. ed. São Paulo: Instituto Geológico. Brazil.

Ullah, I; Aslam, B; Shah, S; Tariq, A; Qim S; Majeed, M; Havenith, Hans-Balder. (2022). An integrated approach of machine learning, remote sensing, and GIS data for the landslide susceptibility mapping. Land, 11(8), s.p. https://doi.org/10.3390/land11081265

Van Eck, N; Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3

Vieira, B; Dos Santos, L; Benini, S. (2021). Análise da detecção de mudança na paisagem ocasionada pela construção da Usina Hidrelétrica das Três Gargantas-Yiling, Hubei, China. Revista Científica ANAP Brasil, 14(34), s.p. https://dokumen.tips/documents/anlise-da-deteco-de-mudana-na-paisagem-ocasionada.html?page=1

Welz, J; Krellenberg, K. (2016). Vulnerabilidad frente al cambio climático en la Región Metropolitana de Santiago de Chile: posiciones teóricas versus evidencias empíricas. EURE (Santiago), 42(125), 251-272. http://dx.doi.org/10.4067/S0250-71612016000100011

XU, G; Wang, Y; Wang, L; Soares, L. (2022). Feature-based constraint deep CNN method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application to Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2644-2659. https://doi.org/10.1109/JSTARS.2022.3161383

Published

2025-01-28

How to Cite

Pereira dos Santos, A., Collins da Cunha e Silva, D., Armando de Oro Arenas, L., & Wagner Lourenço, R. (2025). BIBLIOMETRIC ANALYSIS OF THE USE OF GIS TOOLS IN LANDSLIDE SCENERY ON BRAZIL. Revista Geográfica De América Central., 1(74). https://doi.org/10.15359/rgac.74-1.16

How to Cite

Pereira dos Santos, A., Collins da Cunha e Silva, D., Armando de Oro Arenas, L., & Wagner Lourenço, R. (2025). BIBLIOMETRIC ANALYSIS OF THE USE OF GIS TOOLS IN LANDSLIDE SCENERY ON BRAZIL. Revista Geográfica De América Central., 1(74). https://doi.org/10.15359/rgac.74-1.16

Most read articles by the same author(s)