BIBLIOMETRIC ANALYSIS OF THE USE OF GIS TOOLS IN LANDSLIDE SCENERY ON BRAZIL
DOI:
https://doi.org/10.15359/rgac.74-1.16Keywords:
environmental catastrophes, weather events, susceptibility to landslides, geographic information systems (GIS)Abstract
This research consists of a systematic review of articles that used Geographic Information Systems (GIS) as a way to map landslide-prone areas in Brazil or that experienced this situation. Data available for analysis in the Web Of Science and Scopus search collections were used, and the VOSViewer software was used. A methodology based on exclusion filters was applied, which allowed us to perceive a multidisciplinary approach to the theme and a concentration of published works in areas close to Serra do Mar. The results indicate a remarkable growth in this topic, with more than 60% of the papers published in the last 5 years and which were driven by the growth of research involving landslide predictions through Artificial Intelligence (AI) tools.
References
Arumugam, T; Kinattinkara, S; Velusamy, S; Shanmugamoothy, M; Murugan, S. (2023). GIS based landslide susceptibility mapping and assessment using weighted overlay method in Wayanad: A part of Western Ghats, Kerala. Urban Climate, 49, s.p. https://doi.org/10.1016/j.uclim.2023.101508
Aslam, B; Zafar, A; Khalil, U. (2023). Comparative analysis of multiple conventional neural networks for landslide susceptibility mapping. Natural Hazards, 115(1), 673-707. https://doi.org/10.1007/s11069-022-05570-x
Barcellos, P; da Silva, F; Vissirini, F; Magalhães, C; Terra, J; Dutra, M; do Amaral, I. (2016). Diagnóstico meteorológico dos desastres naturais ocorridos nos últimos 20 anos na cidade de Duque de Caxias. Revista Brasileira de Meteorologia, 31(3), 319-329. https://doi.org/10.1590/0102-778631320150146
Beillouin, D; Cardinael, R; Berre, D; Boyer, A; Corbeels, M; Abigail, F; Demenois, J. (2022). A global overview of studies about land management, land‐use change, and climate change effects on soil organic carbon. Global change biology, 28(4), 1690-1702. https://doi.org/10.1111/gcb.15998
Bertotti, L. (2016). Geotecnologias aplicadas à análise ambiental. CINECA. http://repositorio.unicentro.br:8080/jspui/handle/123456789/963
Casagli, N; Intrieri, E; Tofani, V; Gigli, G; Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51-64. https://doi.org/10.1038/s43017-022-00373-x
Chen, H; Shi, Z. (2020). A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing, 12(10), s.p. https://doi.org/10.3390/rs12101662
Coelho, L; Nunes, A. (2020). Eventos Recentes de Chuva Intensa na Cidade do Rio de Janeiro: Análise Sinótica. Revista Brasileira de Geografia Física, 13(03), 994-1012. http://dx.doi.org/10.26848/rbgf.v13.3.p994-1012
Cruz-Muñoz, F. (2021). Patrones de expansión urbana de las megaurbes latinoamericanas en el nuevo milênio. EURE (Santiago), 47(140), 29-49. http://dx.doi.org/10.7764/eure.47.140.02
Dereczynski, C; Calado, R; Barros, A. (2017). Chuvas extremas no município do Rio de Janeiro, histórico a partir do século XIX. Anuário do Instituto de Geociências, 40(2), 17-30. http://dx.doi.org/10.11137/2017_2_17_30
Girão, Í; Rabelo, D; Zanella, M. (2018). Análise teórica dos conceitos: riscos socioambientais, vulnerabilidade e suscetibilidade. Revista de Geociências do Nordeste, 4, 71-83. https://doi.org/10.21680/2447-3359.2018v4n0ID13273
Haque, I; Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 20(2), 251-263. https://doi.org/10.1016/j.ejrs.2016.12.003
Hong, H; Miao, Y; Liu, J; Zhu, A-Xing. (2019). Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena, 176, 45–64. https://doi.org/10.1016/j.catena.2018.12.035
Hussain, S; Qin, S; Nasim, W; Bukhari, M; Mubeen, M; Fahad, S; Raza, A; Abdo, H; Aqil,
T; Mousa, B; Mumtaz, F; Aslam, M. (2022). Monitoring the dynamic changes in vegetation cover using spatio-temporal remote sensing data from 1984 to 2020. Atmosphere, 13(10), 1609. https://doi.org/10.3390/atmos13101609
Instituto Brasileiro de Geografia e Estatística. (2018). População em áreas de risco no Brasil. IBGE, São José dos Campos: CEMADEN. https://agenciadenoticias.ibge.gov.br/
Intergovernmental Panel on Climate Change. (2023). AR6 Synthesis Report: Climate Change 2023. IPCC. https://www.ipcc.ch/report/sixth-assessment-report-cycle/
Jacobi, P; Tavares, M; Pierro, B. (2022). O Brasil e as tragédias ambientais anunciadas: a cultura do risco e suas consequências para as cidades brasileiras. Boletín del Grupo de Trabajo Cambio ambiental global, metabolismo social local. https://www.clacso.org/wp-content/uploads/2022/07/V1_Cambio-ambiental-global_N4-1.pdf
Lousada, G; Frias, H. (2014). Desastres Ambientais, Prevenção e Mitigação: um estudo de caso na região de Angra dos Reis/ RJ. Continentes. Revista de Geografia, (5), 131-149. https://revistacontinentes.com.br/index.php/continentes/article/view/57
Mejía, V. (2020). Morfología urbana y proceso de urbanización en Ecuador a través de la imagen satelital nocturna de la Tierra, 1992-2012. EURE (Santiago), 46(138), 191-214. http://dx.doi.org/10.4067/S0250-71612020000200191
Matsuo, P; Silva, R. (2021). Desastres no Brasil? Práticas e abordagens em educação em redução de riscos e desastres. Educar em Revista, 37, 1-22. https://doi.org/10.1590/0104-4060.78161
Menezes, S; Ribeiro, C; Lima, C; Souza, M. (2017). Geotecnologias Aplicadas à Gestão Ambiental. Diversidade e Gestão, 1(1), 57-69. http://costalima.ufrrj.br/index.php/diversidadeegestao/article/view/845
Phong, T; Phan, T; Prakash I; Singh, S; Shirzadi, K; Ly, Hai-Bang; Ho, L; Quoc, N; Pham, B. (2021). Landslide susceptibility modeling using different artificial intelligence methods: A case study at Muong Lay district, Vietnam. Geocarto International, 36(15), 1685-1708. https://doi.org/10.1080/10106049.2019.1665715
Oliveira, O; Cunha, R. (2007). O Sig como ferramenta de análise da paisagem: o caso do mangue no bairro de São Domingos em Ilhéus – BA. Revista Paisagem e ambiente, (24), 39-48. https://www.revistas.usp.br/paam/article/download/85675/88436/120695
Pradhan, B. (2019). Artificial Intelligence and Spatial Modelling in Natural Hazards and Environmental Applications. In: El-Askary, H; Lee, S; Heggy, E; Pradhan, B. (eds) Advances in Remote Sensing and Geo Informatics Applications. CAJG 2018. Advances in Science, Technology & Innovation. (Springer), Cham. https://doi.org/10.1007/978-3-030-01440-7_3
Ribeiro, D; Saito, S; Dos Santos, A. (2022). Disaster vulnerability analysis of small towns in Brazil. International Journal of Disaster Risk Reduction, 68, s.p. https://doi.org/10.1016/j.ijdrr.2021.102726
Rivera-Marin, D; Dash, J; Ogutu, B. (2022). The use of remote sensing for desertification studies: A review. Journal of Arid Environments, 206, s.p. https://doi.org/10.1016/j.jaridenv.2022.104829
São Paulo. (2023). Litoral Norte de SP registrou maior acumulado de chuva da história. Governo do Estado. Defesa Civil. https://www.saopaulo.sp.gov.br/ultimas-noticias/litoral-norte-de-sp-registrou-maior-acumulado-de-chuva-da-historia-2/
Tominaga, L; Santoro, J; Amaral, R. (2015). Desastres naturais: conhecer para prevenir. 3. ed. São Paulo: Instituto Geológico. Brazil.
Ullah, I; Aslam, B; Shah, S; Tariq, A; Qim S; Majeed, M; Havenith, Hans-Balder. (2022). An integrated approach of machine learning, remote sensing, and GIS data for the landslide susceptibility mapping. Land, 11(8), s.p. https://doi.org/10.3390/land11081265
Van Eck, N; Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
Vieira, B; Dos Santos, L; Benini, S. (2021). Análise da detecção de mudança na paisagem ocasionada pela construção da Usina Hidrelétrica das Três Gargantas-Yiling, Hubei, China. Revista Científica ANAP Brasil, 14(34), s.p. https://dokumen.tips/documents/anlise-da-deteco-de-mudana-na-paisagem-ocasionada.html?page=1
Welz, J; Krellenberg, K. (2016). Vulnerabilidad frente al cambio climático en la Región Metropolitana de Santiago de Chile: posiciones teóricas versus evidencias empíricas. EURE (Santiago), 42(125), 251-272. http://dx.doi.org/10.4067/S0250-71612016000100011
XU, G; Wang, Y; Wang, L; Soares, L. (2022). Feature-based constraint deep CNN method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application to Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2644-2659. https://doi.org/10.1109/JSTARS.2022.3161383
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Arthur Pereira dos Santos, Darllan Collins da Cunha e Silva, Luis Armando de Oro Arenas, Roberto Wagner Lourenço

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Proposed policy for journals offering Open Access
Authors publishing their works in the Journal acknowledge and agree to the following terms:
a) Authors retain the copyrights to their works and guarantee the Journal the right to be the first to publish their works, under the Creative Commons License Attribution-NonCommercial-ShareAlike 4.0 International, CC BY-NC-SA 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es), which allows others to share works upon complying with the acknowledgment of authorship and mention of the Journal as the original publisher of the work.
b) Authors are permitted to separately establish additional agreements for the non-exclusive distribution of the official edition of the work published in the Journal (for example, authors may desire to place the work in an institutional repository or incorporate it into a book that is to published elsewhere) so long they acknowledgment to recognize the Journal as the original publisher. The aforementioned additional agreements must respect the terms of the non-profit character and sharing philosophy of the original license (CC BY-NC-SA 4.0 International, https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es).
c) Authors are encouraged to archive the post-print or editor/PDF version in Open Access repositories.