Statistical Inference in School Textbooks. An Approach to Statistical Thinking

Authors

DOI:

https://doi.org/10.15359/ru.38-1.19

Keywords:

Confidence intervals, statistical inference, statistical thinking, textbooks, prospective teachers

Abstract

[Objective] The main purpose of this study was to analyze the activities related to statistical inference present in secondary education textbooks in Chile, and their relationship to the development of statistical thinking. [Methodology] For the purposes of the study, a qualitative approach was used through a content analysis of the secondary education books disseminated free of charge by the Chilean Ministry of Education during the years 2016, 2018, 2020, 2021 and 2022, which were selected using intentional non-probabilistic sampling. [Results] Among the main results obtained, it was found that most of the activities related to statistical inference in the textbooks analyzed had to do with procedures related to the calculation of confidence intervals, without addressing their interpretation in the context of the problem. In addition, it was observed that there were few activities related to informal inference. Likewise, the activities and questions presented in the textbooks do not refer to the formulation of hypotheses or conjectures about the sample data made to guide the formulation of conclusions related to statistical inference. [Conclusions] The findings indicate that despite the fact that confidence intervals are among the topics related to statistical inference in the textbooks, these textbooks are not focused on decision-making at the population level, but rather on description.

References

Alvarado, H., Estrella, S., Retamal, L., & Galindo, M. (2018). Intuiciones probabilísticas en estudiantes de ingeniería: implicaciones para la enseñanza de la probabilidad. Revista Latinoamericana de Investigación en Matemática Educativa, 21(2), 131-156. https://doi.org/10.12802/relime.18.2121

Alveal, F. R., & Rubilar, P. R. S. (2012). Habilidades de codificación y descodificación de tablas y gráficos estadísticos: un estudio comparativo en profesores y alumnos de pedagogía en enseñanza básica. Avaliação: Revista Da Avaliação Da Educação Superior (campinas), 17(1). https://doi.org/10.1590/S1414-40772012000100011

Batanero, C. (2005). Significados de la probabilidad en la educación secundaria. Revista Latinoamericana de Investigación en Matemática Educativa, 8(3), 247-264. Recuperado de https://dialnet.unirioja.es/descarga/articulo/2096616.pdf

Batanero, C. (2013). Del análisis de datos a la inferencia: Reflexiones sobre la formación del razonamiento estadístico. Cuadernos, 8(11), 277-291.

Batanero, C., Biehler, R., Engel, J., Maxara, C., & Vogel, M. (2005). Using Simulation to Bridge Teachers Content and Pedagogical Knowledge in Probability. En ICMI-Study 1. Recuperado de http://stwww.weizmann.ac.il/G-math/ICMI/log_in.html

Batanero, C., Díaz, C., Contreras, J., & Roa, R. (2013). El sentido estadístico y su desarrollo. Números. Revista de Didáctica de las Matemáticas, 83, 7-18.

Ben-Zvi, D., & Garfield, J. (2004). Research on Reasoning about Variability: A Forward. Statistical Education Research Journal, 3(2), 4-6. https://doi.org/10.52041/serj.v3i2.536

Ben-Zvi, D., & Makar, K. (2016). The teaching and learning of Statistics. International perspectives. Suiza: Springer International Publishing. https://doi.org/10.1007/978-3-319-23470-0

Borovcnik, M. (2022). The role of probability for understanding statistical inference. ICOTS11 (2022). https://doi.org/10.52041/iase.icots11.T6G1

Castro, A., Vanhoof, S., Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98-113. https://doi.org/10.1016/j.edurev.2007.04.001

Cobb, G., & Moore, D. (1997). Mathematics, Statistics, and Teaching. American Mathematical Monthly, 104(9), 801-823. https://doi.org/10.1080/00029890.1997.11990723

Cobb, T. (2007). Computing the vocabulary demands of L2 reading. Language Learning & Technology, 11(3), 38-63. Recuperado de https://www.lltjournal.org/item/441/

Cobo, B. (2003). Significados de las medidas de posición central para los estudiantes de secundaria (Tesis doctoral). Universidad de Granada, España.

Collins. (2003). Collins English dictionary (6th Revised Edition). Collins.

Curcio, F. R. (1989). Developing graph comprehension. Reston: N. C. T. M.

Engel, J. (2010). On teaching bootstrap confidence intervals. En Reading, C. (Ed.), Proceedings of the eighth International Conference on Teaching Statistics. Voorburg, Países Bajos: International Statistical Institute. Recuperado de http://www.stat.auckland.ac.nz/iase/publications.php (en línea).

Estrella, S. (2017). Enseñar estadística para alfabetizar estadísticamente y desarrollar el razonamiento estadístico. En Salcedo, A. (Ed.), Alternativas Pedagógicas para la Educación Matemática del Siglo XXI (pp. 173-194). Caracas: Centro de Investigaciones Educativas, Escuela de Educación, Universidad Central de Venezuela.

Fidler, F., & Cumming, G. (2005). Interval estimates for statistical communication: Problems and possible solutions [Paper presentation]. IASE Satellite Conference on Communication of Statistics, Sydney, International Association for Statistical Education. https://doi.org/10.52041/SRAP.05201

GAISE. (2005). Guidelines for assessment and instruction in statistics education (GAISE) report: A curriculum framework for PreK-12 statistics education. ASA.

GAISE. (2016). Guidelines for assessment and instruction in statistics education. College report. Alexandria, VA: American Statistical Association. Recuperado de: https://www.amstat.org/asa/files/pdfs/GAISE/GaiseCollege_Full.pdf

Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching practice. Dordrecht, Países Bajos: Springer.

Giaconi, V., Montenegro, H., Rojas, F., Catalán, M., & Guíñez, F. (2022). Tensiones al enseñar inferencia estadística en la formación inicial docente. Enseñanza de las Ciencias, 40(3), 71-86. https://doi.org/10.5565/rev/ensciencias.5595

Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers' knowledge of sampling and inference. En Batanero, C., Burrill, G., & Reading, C. (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education (pp. 235-246). Nueva Serie ICMI, Springer. https://doi.org/10.1007/978-94-007-1131-0_24

Huerta, M. P. (2020). Hipótesis y conjeturas en el desarrollo del pensamiento del pensamiento estocástico: retos para su enseñanza y en la formación de profesores. Revista Latinoamericana De Investigación En Matemática Educativa, 23(1). https://doi.org/10.12802/relime.20.2313.

León, N. (2021). Enseñanza de la estadística con sentido y en contexto a través de la resolución de problemas. Realidad y Reflexión, 53, 228-253. https://doi.org/10.5377/ryr.v53i53.10897

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82-105. https://doi.org/10.52041/serj.v8i1.457

Mayring, P. (2000). Qualitative Content Analysis. Forum Qualitative Sozialforschung/ Forum: Qualitative Social Research, 1(2). https://doi.org/10.17169/fqs-1.2.1089

McMillan, J., & Schumacher, S. (2011). Investigación educativa. Pearson-Adisson Wesley.

Meletiou-Mavrotheris, M., Lee, C., & Fouladi, R. (2007). Introductory statistics, college student attitudes and knowledge-a qualitative analysis of the impact of technology-based instruction. International Journal of Mathematical Education in Science and Technology, 38(1), 65-83. https://doi.org/10.1080/00207390601002765

MINEDUC-CPEIP. (2020). Informe Resultados Nacionales. Evaluación Nacional Diagnóstica de la Formación Inicial Docente 2019. Centro de Perfeccionamiento, Experimentación e Investigaciones Pedagógicas.

Moore, D. S. (2004). The basic practice of statistics (3rd ed.). Nueva York: W. H. Freeman.

Pfannkuch, M. (2006). Informal inferential reasoning. En Rossman, A., & Chance, B. (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics [CD]. Voorburg, Países Bajos: International Association for Statistics Education.

Pfannkuch, M., Wild, C. J., & Parsonage, R. A. (2012). Conceptual pathway to confidence intervals. ZDM Mathematics Education, 44, 899-911. https://doi.org/10.1007/s11858-012-0446-6

Reaburn, R. (2014). Students’ understanding of confidence intervals. En Makar, K., B. de Sousa, & Gould, R. (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, Países Bajos: IASE.

Reading, C., & Shaughnessy, M. (2004). Reason about variation. En Ben-Zvi, D., & Garfield, J. (Eds.), The Challenge of Developing Statistical Literacy, Reasoning, and Thinking (pp. 201-226). Países Bajos: Kluwer Academic Publishers. https://doi.org/10.1007/1-4020-2278-6_9

Reichardt, C. S., & Gollob, H. F. (1997). When confidence intervals should be used instead of statistical tests, and vice versa. En Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.), What if there were no significance tests? (pp. 259-284). Londres: Lawrence Erlbaum Associates, Publishers.

Rodríguez-Alveal, F., & Maldonado-Fuentes, A. (2023). Tipología de las preguntas acerca del concepto variabilidad en los textos escolares y su relación con la Alfabetización y pensamiento estadístico. Uniciencia, 37(1), 65-83. https://doi.org/10.15359/ru.37-1.4

Rossman, A. (2008). Reasoning about informal statistical inference: One statistician’s view. Statistics Education Research Journal, 7(2), 5-19. https://doi.org/10.52041/serj.v7i2.467

Ruz, F., Chance, B., Medina, E., & Contreras, J. M. (2021). Content knowledge and attitudes towards stochastics and its teaching in pre-service Chilean mathematics teachers. Statistics Education Research Journal. https://doi.org/10.52041/serj.v20i1.100

Sabbag, A., Garfield, J., & Zieffler, A. (2018). Assessing statistical literacy and statistical reasoning: The reali instrument. Statistics Education Research Journal, 17(2), 141-160. Recuperado de https://doi.org/10.52041/serj.v17i2.163

Shi, H., & Yin, G. (2021). Reconnecting p-Value and Posterior Probability Under One- and Two-Sided Tests. The American Statistician, 75(3), 265-275. https://doi.org/10.1080/00031305.2020.1717621

Watson, J., Fitzallen, N., Fielding-Wells, J., & Madden, S. (2018). The Practice of Statistics. En Ben-Zvi, D., Makar, K., & Garfield, J. (Eds.), International Handbook of Research in Statistics Education. Springer International Handbooks of Education. Cham: Springer. https://doi.org/10.1007/978-3-319-66195-7_4

Wild, C. y Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223-265. https://doi.org/10.2307/1403699

Wild, C. J., Utts, J. M., & Horton, N. J. (2018). What is statistics? In Ben-Zvi, D., Makar, K. & Garfiel, J. (Eds.), International Handbook of Research in Statistics Education (pp. 5-36). Gewerbestrasse: Springer. https://doi.org/10.1007/978-3-319-66195-7_1

Published

2024-07-31

How to Cite

Statistical Inference in School Textbooks. An Approach to Statistical Thinking. (2024). Uniciencia, 38(1), 1-16. https://doi.org/10.15359/ru.38-1.19

Issue

Section

Original scientific papers (evaluated by academic peers)

How to Cite

Statistical Inference in School Textbooks. An Approach to Statistical Thinking. (2024). Uniciencia, 38(1), 1-16. https://doi.org/10.15359/ru.38-1.19

Comentarios (ver términos de uso)