Flujo por redistribución de agua a través de perfiles de la zona no saturada bajo condiciones de uso de la tierra agrícola en la cuenca alta del río Páez, Cartago, Costa Rica

Autores/as

DOI:

https://doi.org/10.15359/rgac.70-1.7

Palabras clave:

movimiento del agua, suelos volcánicos, drenaje interno

Resumen

El principal objetivo de este estudio fue analizar el flujo de agua por redistribución a través de los horizontes de perfiles de suelos volcánicos en la Zona No Saturada (ZNS), una vez que ha finalizado la infiltración de agua por lluvia. A partir de monolitos experimentales, se monitorearon los contenidos volumétricos de agua en perfiles a diferentes profundidades para entender la dinámica de flujo temporal a lo largo de un perfil. Se evaluaron en laboratorio las propiedades físicas e hidráulicas de los horizontes como: textura, granulometría, materia orgánica, densidad aparente, densidad real, porosidad, conductividad hidráulica y retención de humedad. Se encontró que las propiedades físicas e hidráulicas de los horizontes ayudan a explicar el comportamiento del agua en profundidad. Los aportes de agua por redistribución en profundidad, debido a flujo vertical, fueron encontrados mediante el análisis de los contenidos volumétricos de agua. Estos aportes se evidenciaron por los incrementos en los contenidos volumétricos durante el desarrollo del experimento. Se pudo observar cómo cambió el flujo por redistribución en los perfiles de un horizonte, al mostrar de esa forma la variación de las propiedades de los horizontes en profundidad. Una vez establecidos los flujos por redistribución de agua, se caracterizaron los tipos de flujos de agua que se dieron lugar en los perfiles de los monolitos para establecer cuál es la dinámica del frente de humedecimiento en profundidad y como avanza este durante el desarrollo del experimento. Los resultados mostraron que en los monolitos se presentan el flujo de pistón, el flujo preferencial y el flujo dual o combinado producto de la combinación de ambos.

Biografía del autor/a

Pablo Ramírez-Granados, Doctor, Universidad Nacional

Dr. Investigador, Laboratorio de Hidrogeología y Manejo de Recursos Hídricos, Escuela de Ciencias Ambientales, Universidad Nacional, Correo electrónico: pablo.ramirez.granados@una.ac.cr.  Orcid: https://orcid.org/0000-0002-5082-445X

Karolina Villagra-Mendoza, Ingeniera, Instituto Tecnológico de Costa Rica

Ingeniera. Investigadora, Escuela de Ingeniería Agrícola, Instituto Tecnológico de Costa Rica, Correo electrónico: kvillagra@itcr.ac.cr. Orcid: https://orcid.org/0000-0002-2335-0615

Federico Masís-Meléndez, Ingeniero, Instituto Tecnológico de Costa Rica

Ingeniero. Investigador, Escuela de Ingeniería Ambiental, Instituto Tecnológico de Costa Rica, Correo electrónico: fmasis@tec.ac.cr. Orcid: https://orcid.org/0000-0003-1456-7190,

Referencias

Abbasi, F., Javauaxm M., Vanclooster, M. y Feyen, J. 2012. Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189-190: 480-490.

Alvarado, A. y Forsythe, W. (2005). Variación de la densidad aparente en órdenes de suelos de Costa Rica. Agronomía Costarricense 29(1), 85-94.

Alvarado, A., Mata, R. y Chinchilla, M. (2014). Arcillas identificadas en suelos de Costa Rica a nivel generalizado durante el período 1931-2014: I. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense 38(1), 75-106.

Ankenbauer, K. y Loheide, S. (2016). The effects of soil organic matter on soil water retention and plant water use in a meadow if the Sierra Nevada, CA. Hydrological Processes (31), 891-901.

Aranda, M., Arrúe, J., Ugarte; J. y Moreno, F. (1980). Propiedades físicas y químicas en relación con la porosidad de los suelos: Influencia del ciclo natural de humectación-desecación. IV Hinchamiento y contracción. Anales de Edafología y Agrobiología 39 (3-4), 523-537

Arellano, F., Vásquez, M., Suárez, J. y Rafael, E. (2012). Identificación de zonas de protección y de captura de las nacientes, subcuencas de los ríos Reventado, Tiribí, Tatiscú, Páez, Birrís y Pacayas, Provincia de Cartago, Costa Rica. Licitación Abreviada 2012LA-000068-87900 Informe Final. COMCURE-MINAET-Dirección de Agua-Hidrogeotecnia Ltda.

Arya, L. y Paris, J. (1981). A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Socienty of America Journal (45), 1023-1030.

Assouline, S. (2006). Modeling the relationship between soil bulk density and the water retention curve. Vadose Zone Journal (5), 554-563.

Biswas, T., Nielsen, D. y Biggar, J. (1966). Redistribution of soil water after infiltration. Water Resources Research 2(3), 513-524.

Bouma, J. (1981). Soil morphology and preferential flow along macropores. Agricultural Water Management (3), 235-250.

Braund, A., Hartmann, C., Ratana, S., Sindhusen, P., Poss, R. y Hardy, M. 2004. Composition, fabric, and porosity of an arenic haplustalf of Northeast Thailand: Relation and penetration resistance. Soil Science Society of America Journal (68), 185-193.

Braund, A., Hartmann, C. y Lesturgez, G. (2005). Physical properties of tropical sandy soils: A large range of behaviours. Management of Tropical Sandy Soil for Sustainable Agriculture. International Union of Soil Science.

Ceballos, D., Hernández, O. y Vélez, J. 2010. Efecto de la labranza sobre las propiedades físicas en un andisol del Departmento de Nariño. Revista de Agronomía 23(1), 40-48.

Charbeneau, R. (1989). Liquid moisture redistribution: Hydrologic simulation and spatial variability. En Morel-Seytoux (ed). (1989). Unsaturated Flow in Hydrologic Modeling: Theory and Practice. Kluwer Academic Publishers, pp.127-161.

Chen, S., Huo, Z., Xu, X. y Huang, G. (2019). A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater. Agricultural Water Management (213) 309-323.

Cuolon, E. y Bruand, A. (1989). Effects of compaction on the pore space geometry in sandy soils. Soil & Tillage Research (15), 137-152.

Dec, D., Dörner, J., Becker, O. y Horn, R. (2008). Effect of bulk density on hydraulic properties of homogenized and structured soils. Revista de Ciencia del Suelo y Nutrición Vegetal 8(1), 1-13.

Eguchi, S. y Hasegawa, S. (2008). Determination and characterization of preferential water flow in unsaturated subsoil of andisol. Soil Science Society of America Journal 72(2), 320-330.

Espinoza, Y. (2010). Efecto de la labranza sobre la materia orgánica y tamaño de agregado en un suelo cultivado con maíz en condiciones tropical. Bioagro 22(3), 177.184.

FAO. (2009). Guía para la Descripción de Suelos. 4ta edición. FAO.

Fuentes, S., Trejo, J., Quevedo, A., Fuentes, C. y Chávez, C. (2020). Modeling soil water redistribution under gravity irrigation with Richards Equation. Mathematics 8(9), 1581.

Gao, Z., Xu, X., Zhao, J., Yu, M., Zhang, S. y Zhao, C. (2014). Field study on preferential flow under different land uses in the Loess Hilly region. Nature Environment and Pollution Technology 13(3), 483-490.

Gardner, W., Hillel, D. y Benyamini, Y. (1970). Post-irrigation movement of soil water: 1. Redistribution. Water Resource Research 6(3), 851-861.

Gerke, H., Germann, P. y Nieber, J. (2010). Preferential and unstable flow: From the pore to the catchment scale. Vadose Zone Journal 9(2), 207-212.

Ghassemi, A. y Pak, A. (2011). Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method. International Journal for Numerical and Analytical Methods in Geomechanics 35(8), 886-901.

Gómez, N., Solórzano, M. y Villagra, K. (2017). Cuantificación de la erosión hídrica en función de diferentes técnicas de mecanización para minimizar la contaminación del agua por sedimentos en la parte alta de la cuenca del río Reventazón. Informe Final. Tecnológico de Costa Rica.

Gómez, N., Estrada, R. (2020). Conservación de suelos mediante la modificación de la frecuencia de labranza: Un caso en Costa Rica. Revista de Ciencias Ambientales 54(1), 123-139.

Green, T., Ahuja, L. y Benjamin, J. (2003). Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma (116), 3-27.

Hao, X., Ball, B., Culley, J., Carter, M. y Parkin, G. 2008. Soil Density and Porosity. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 743-760. 2da edición. Canadian Society of Soil Science.

Hari, K., Ojha, C., Chandramouli, P. y Madramootoo, C. (2010). Estimation of unsaturated hydraulic parameters from infiltration and internal drainage experiments. Journal of Irrigation and Drainage Engineering.

Hazelton, P. y Murphy, B. 2016. Interpreting Soil Test Results: What do all the numbers mean? 3era edición. CSIRO Publishing.

Henríquez, C y Cabalceta, G. (1999). Guía Práctica para el Estudio Introductorio de los Suelos con un Enfoque Agrícola. Asociación Costarricense de la Ciencia del Suelo.

Hillel, D., Krentos, V. y Stylianou, Y. (1972). Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ. Soil Science 114(5), 395-400.

Hillel, D. y Talpaz, H. (1977) Simulation of soil water dynamics in layered soils. Soil Science 123 (1), 54-62.

Horgan, G. y Ball, B. (2005). Modelling the effect of water distribution and hysteresis on air-filled pore space. European Journal of Soil Science (56), 647-634.

Jarvis, N. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science (58), 523-546.

Jury, W., Wang, Z. y Tuli, A. (2003). Conceptual model of unstable flow in unsaturated soil during redistribution. Vadose Zone Journal (2), 61-67.

Kan, X., Cheng, J., Hu, X., Zhu, F. y Li, M. (2019). Effects of grass and forest and the infiltration amount on preferential flow in karst regions of China. Water 11 (8): 1634.

Kay, B. y VandenBygaart, A. 2002. Conservation tillage and depth stratification of porosity and soil organic matter. Soil & Tillage Research (66), 107-118.

Kendy, E., Gérard, P., Walter, M.,Zhang, Y., Liu, C. y Steenhuis, T. 2003. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain. Hydrological Processes 17, 2011-2031.

Kirkham, M. (2005). Principles of Soil and Plant Water Relations. Elsevier.

Koponen, A., Kataja, M. y Timonen, J. (1997). Permeability and effective porosity of porous media. Physical Review E 56(3), 3319-3325.

Kramer, G. y Gleixner, G. (2008). Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biology and Biochemistry (40), 425-433.

Kranz, W., Kanwar, R. y Pederson, C. (1998). Collection and monitoring of one-meter cubic soil monoliths for leaching studies. Transactions of the American Society of Agricultural Engineers 41(2): 333-344.

Krisdani, H., Rahardjo, H. y Leong, E. (2009). Use of instantaneous profile and statistical methods to determine permeability functions of unsaturated soils. Canadian Geotechnical Journal (46), 869-874.

Kroetsch, D. y Wang, C. (2008). Particle Size Distribution. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 713-725. 2da edición. Boca Raton, Canadian Society of Soil Science.

Krushensky, R. (1972). Geology of Istaru Quadrangle, Costa Rica. Bulletin 1358. United States Geological Survey.

Kung, K. (1990). Preferential flow in a sandy vadose zone: 1. Field observation. Geoderma (46), 51-58.

Lai, W., Ogden, F., Steinke, R. y Talbot, C. (2017). An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table. Water Resources Research (51), 1514-1528.

Mata, R. y Sandoval, D. (2016). Mapa Digital de Suelos de Costa Rica. Centro de Investigaciones Agronómicas. Universidad de Costa Rica.

Mehuys, G., Tiessem, K., Villatoro, M., Sancho, F. y Lobb, D. (2009). Erosión por labranza con arado de disco en suelos volcánicos de ladera en Costa Rica. Agronomía Costarricense 33(2), 205-215.

Mavinbela, S. y Rensburg, L. (2011). In-situ evaluation of internal drainage in layered soils (Tukulu, Sepane and Swartland). Hydrological Earth System Science 8: 9797-9841.

Mossadeghi, M., Arvidsson, J., Keller, T., Koestel, J., Lamandé, M., Larsbo, M. y Jarvis, N. (2016). Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil. Soil & Tillage Research (156), 91-98.

Narváez, I. (2013). Percepción sobre la tendencia de caudales, precipitación, temperatura y cambio de uso del suelo con relación al uso y manejo del agua en la zona norte de Cartago, Costa Rica. (Trabajo de Graduación). Centro Agronómico Tropical de Investigación y Enseñanza.

Ng, C. y Shi, Q. (1998). A numerical investigation of the stability of unsaturated soi slopes subjected to transient seepage. Computers and Geotechnics 22(1). 1-28.

Ortiz, J., Gavrilov, I., Palacios, O. y Acosta, R. (1999). Pérdidas de agua de riego por percolación profunda durante el proceso de infiltración. Terra Latinoamericana 17(2), 115-124.

Pérez, F. (2000). The influence of surface volcaniclastic layers form Haleakala (Maui, Hawaii) on soil water conservation. Catena (38) 301-332.

Philip, J. (1991). Horizontal redistribution with capillary hysteresis. Water Resource Research 27(7): 1459-1469.

Philip, J. y Knight, J. (1991). Redistribution of soil water from plane, line, and point sources. Irrigation Science (12), 169-180.

Philip, J. (1992). Exact solutions for redistribution by nonlinear convection-diffusion. Journal of Australian Mathematical Society (33) 362-383.

Pirastru, M., Marrosu, R., Di Prima, S., Keesstra, S., Giadrossich,F. y Niedda, M. (2017). Lateral saturated hydraulic conductivity of soil horizons evaluated in large-volume soil monoliths. Water 9(11), 862.

Quesada, J. (2017). Determinación de los requerimientos de agua para diferentes cultivos de la zona norte de Cartago. (Trabajo Final de Graduación). Tecnológico de Costa Rica.

Ramadas, M., Ojha, C. y Govindaraju, R. (2016). Analytical models of infiltration and redistribution for unsaturated flow in soils with vertically non-uniform saturated hydraulic conductivity. ISH Journal of Hydraulic Engineering, 22:2, 181-192.

Ramírez, P. (2007). Caracterización de la dinámica de flujo mediante la aplicación de un modelo numérico hidrogeológico: Caso de la cuenca del río Birrís, Cartago, Costa Rica. Revista Geológica de América Central 34-35: 83-97.

Ramírez, L., McHugh, A y Alvarado, A. (2008). Evolución histórica y caracterización socioeconómica de la cuenca media del río Reventado, Cartago, Costa Rica. Agronomía Costarricense 32(2), 53-72.

Ramírez, F., Fournier, M., Ruepert, C. y Hidalgo, C. (2014). Uso de agroquímicos en el cultivo de papa en Pacayas, Cartago, Costa Rica. Agronomía Mesoamericana 25(2), 337-345.

Raats, P. (1973). Unstable wetting fronts in uniform and nonuniform soils. Soil Science Society of America Proceedings (37), 681-685.

Reynolds, W. (2008 A). Saturated Hydraulic Properties: Laboratory Methods. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 1013-1024. 2da edición. Boca Raton, Canadian Society of Soil Science.

Reynolds, W. (2008 B). Unsaturated Hydraulic Properties: Instantaneous Profile. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 1129-1138. 2da edición. Boca Raton, Canadian Society of Soil Science.

Reynolds, W. y Topp, G. (2008). Soil Water Desorption and Imbibition: Tension and Pressure Techniques. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 981-997. 2da edición. Boca Raton, Canadian Society of Soil Science.

Rubin, J. (1967). Numerical method for analyzing hysteresis-affected, post-infiltration redistribution of soil moisture. Soil Science Society of America Proceedings 31: 13-20.

Rubin, Y. (2003). Applied Stochastic Hydrogeology. Oxford University Press.

Salcedo, E., Galvis, A., Hernández, T., Rodríguez, R., Zamora, F., Bugarin, R. y Carrillo, R. (2007) La humedad aprovechable y su relación con la materia orgánica y superficie específica de suelo. Terra Latinoamérica 25(4), 419-425.

Schwen, A., Zimmermann, M. y Bodner, G. (2014). Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. Journal of Hydrology (516), 169-181.

Shoji, S., Nanzyo, M. y Dahlgren, R. (1993). Volcanic Ash Soils: Genesis, Properties and Utilization. Developments in Soil Science 21. Elsevier.

Šimůnek, J., Jarvis, N., van Genuchten, M. y Gärdenäs, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology (272), 14-35.

Skjemstad, J. y Baldock, J. (2008). Total and Organic Carbon. En Carter, M. y Gregorich, E. (eds). (2008). Soil Sampling and Methods of Analysis pp. 225-237. 2da edición. Boca Raton, Canadian Society of Soil Science.

Sobieraj, J., Elsenbeer, H. y Cameron, G. (2004). Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena (55), 49-77.

Sonaje, N. (2013). Modeling of infiltration process – A review. Indian Journal of Applied Research 3(9) 226-230.

Staple, W. (1966). Infiltration and redistribution of water in vertical columns of loam soil. Soil Science Society of America Proceedings (30), 553-558.

Tejedor, M., Jiménez, C. y Díaz, F. (2003). Volcanic materials as mulches for water conservation. Geoderma (117), 283-295.

Tindall, J. y Kunkel, J. (1999). Unsaturated Zone Hydrology for Scientist and Engineers. Prentice Hall.

Van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society American Journal (44), 892-898.

Van Genuchten, M., Leij; F. y Yates, S. (1980). The RECT code for quantifying the hydraulic functions of unsaturated soils. U.S. Salinity Laboratory. U.S. Department of Agriculture. Agriculture Research Service.

Van Stiphout, T., van Lanen, H., Boersma, O. y Bouma, J. (1987). The effect of bypass flow and internal catchment of rain on the water regime in a clay loam grassland soil. Journal of Hydrology (95). 1-11.

Vachaud, G. y Dave, J. (2002). Instantaneous Profile. En Dane, J. y Topp, G. (eds). (2002). Methods of Soil Analysis, Part 4 Physical Methods pp. 937-945. Soil Science Society of America.

Vega, O. (1999). Estudio semidetallado de suelos de la zona de Tierra Blanca, Potrero Cerrado y Llano Grande, Cartago. Ministerio de Agricultura y Ganadería.

Wang, Z., Wu, L., Harter, T., Lu, J. y Jury, W. (2003). A field study of unstable preferential flow during soil water redistribution. Water Resources Research 34(4), 1075.

Wang, K. y Zhang, R. (2011). Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine. Journal of Hydrology (397) 105-117.

Wiekenkamp, I., Huisman, J., Bogema, H. y Vereecken, H. (2020). Effects of deforestation on water flow in the vadose zone. Water 12 (1), 2-16.

Xiang, W., Si, B., Biswas, A y Li, Z. (2019). Quantifying dual recharge mechanisms in deep unsaturated zone of Chinese Loess Plateau using stable isotopes. Geoderma (337), 773-781.

Yang, H., Rahardjo, H., Leong, E. y Fredlund, D. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Canadian Geotechnical Journal (41), 908-920.

Yang, F., Zhang, G., Yang, J., Li, D., Zhao, Y., Liu, F., Yang, R. y Yang, F. (2014). Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. Journal of Hydrology (519), 3086-3093.

Yao, T. y Hendrickx, J. (1996). Stability of wetting fronts in dry homogeneous soils under low infiltration rates. Soil Science Society of America Journal (60), 20-28.

Yatno, E. y Suharta, N. (2011). Andisols derived from pyroclastic liparite tuff: Their properties and their management strategy for agricultural development. Jurnal Tanah Dan Iklim (33), 49-64.

Zhai; Q., Rahardjo, H., Satyanaga, A., Zhu, Y., Dai, G. y Zhao, X. 2021. Estimation of wetting hydraulic conductivity function for unsaturated sandy soil. Engineering Geology 285: 106034.

Zhang, Z., Si, B., Li, H. y Li, M. (2019 A). Quantify piston and preferential water flow in deep soil using Cl- and soil water profiles in deforested apple orchards on the Loess Plateau, China. Water 11(10), 2183.

Zhang, J., Lei, T., Qu, L., Zhang, M., Chen, P., Gao, X., Chen, C. y Yuan, L. (2019 B). Method to quantitatively partition the temporal preferential flow and matrix infiltration in the forest soil. Geoderma 347(10), 150-159.

Zhou, B., Li, Y., Wang, Q., Jiang, Y. y Li, S. (2013). Preferential water and solute transport through sandy soil containing artificial macropores. Environmental Earth Science (70), 2371-2379.

Zhuang, L., Hassanizadeh, S., Kleingeld, P. y van Genuchten, M. (2017). Revisiting the horizontal redistribution of water in soils: Experiments and numerical modeling. Water Resources Research 53: 75.

Zúñiga, H. y Ramírez, P. (2015). Geología de la parte norte del Cantón Central de Cartago, Costa Rica. Informe de consultoría. Hidrogeotecnia Ltda.

Publicado

2022-12-02

Cómo citar

Ramírez-Granados, P., Villagra-Mendoza, K., & Masís-Meléndez, F. (2022). Flujo por redistribución de agua a través de perfiles de la zona no saturada bajo condiciones de uso de la tierra agrícola en la cuenca alta del río Páez, Cartago, Costa Rica. Revista Geográfica De América Central, 1(70), 179-220. https://doi.org/10.15359/rgac.70-1.7

Número

Sección

Teoría, Epistemología, Metodología (Evaluados por pares)

Cómo citar

Ramírez-Granados, P., Villagra-Mendoza, K., & Masís-Meléndez, F. (2022). Flujo por redistribución de agua a través de perfiles de la zona no saturada bajo condiciones de uso de la tierra agrícola en la cuenca alta del río Páez, Cartago, Costa Rica. Revista Geográfica De América Central, 1(70), 179-220. https://doi.org/10.15359/rgac.70-1.7

Artículos más leídos del mismo autor/a