Approaching to water quality modeling processes in a subwatershed. The Virilla River case in Costa Rica

Keywords: Surface water, water quality, modeling, MOHID Land, Virilla River

Abstract

A surface water quality model was implemented as a first approach to mathematical modeling processes as an input for the integrated management of the middle basin of the Virilla River. The study was conducted in a 20 km-section covering from San Miguel de Santo Domingo to San Antonio de Belén, which is fed by the Tibás River as the main tributary and some discharges of wastewater resulting from various productive activities. The study used a quantitative approach and a MOHID Land model, as well as experimental and historical data of the variables needed for modeling. The model implemented is a numerical program that simulates the dynamics between water-soil and solute transport processes. For purposes of this study, two quality indicators, dissolved oxygen and biochemical oxygen demand, was the concentration modeled. The results obtained in the modeling presented a good adjustment in contrast to the data used for model validation; the error percentages obtained are rated as very good, good, and satisfactory, which can generally be described as an applicable model. Despite this, a more robust calibration needs to be developed along with a sensitivity analysis. There should be a greater dissemination of the use of this tool for the integrated management of water resources in the country. This study serves as a basis for the future modeling of other physicochemical parameters of water bodies, as well as its application in other similar rivers.

References

Álvarez-Cabria, M.; Barquín, J. & Peñas, F. J. (2016). Modelling the spatial and seasonal variability of water quality for entire river networks: relationships with natural and anthropogenic factors. Science of the Total Environment, 545-546(1), 152-162. doi: https://doi.org/10.1016/j.scitotenv.2015.12.109
Amand, L. & Carlsson, B. (2012). Optimal aeration control in a nitrifying activated sludge process. Water Research, 46(7), 2101-2110. doi: https://doi.org/10.1016/j.watres.2012.01.023
Ballestero, M. & Reyes, V. (2006). Water Quality Managment in Central America: Case Study of Costa Rica. En A. K., Biswas, B., Braga, C., Tortajada, D. J., Rodríguez. (Eds.), Water Quality Management in the Americas (pp. 179-198). New York: Springer Berlin Heidelberg. doi: https://doi.org/10.1007/3-540-30444-4_12
Barrenha, P. I. I.; Tanaka, M. O.; Hanai, F. Y.; Pantano, G.; Moraes, G. H.; Xavier, C. & Mozeto, A. A. (2018). Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river. Environmental Monitoring and Assessment, 190(1). doi: https://doi.org/10.1007/s10661-017-6386-4
Barreto, I.; Ezzatti, P. & Fossati, M. (2009). Estudio inicial del modelo. Montevideo, Uruguay: Universidad de la República, Instituto de Computación. Recuperado de https://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR0910.pdf
Benedini, M. & Tsakiris, G. (2013). Water Quality Modelling for Rivers and Streams. New York: Springer Dordrecht Heidelberg. doi: https://doi.org/10.1007/978-94-007-5509-3
Bower, K. M. (2014). Water supply and sanitation of Costa Rica. Environmental Earth Sciences, 71(1), 107-123. doi: https://doi.org/10.1007/s12665-013-2416-x
Brito, D.; Campuzano, F. J.; Sobrinho, J.; Fernandes, R. & Neves, R. (2015). Integrating operational watershed and coastal models for the Iberian Coast: watershed model implementation - A first approach. Estuarine, Coastal and Shelf Science, 167, 138-146. doi: https://doi.org/10.1016/j.ecss.2015.10.022
Calvo-Brenes, G. & Mora-Molina, J. (2007). Evaluación y clasificación preliminar de la calidad del agua de la cuenca del Río Tárcoles y el Río Reventazón. Parte I: análisis de la contaminación de cuatro ríos del área metropolitana. Revista Tecnología En Marcha, 20(2), 1-9. Recuperado de https://dialnet.unirioja.es/descarga/articulo/4835515.pdf.
Calvo-Brenes, G. & Mora-Molina, J. (2012). Análisis de la calidad de varios cuerpos de agua superficiales en el GAM y la Península de Osa utilizando el Índice Holandés. Revista Tecnología en Marcha, 25(5), 37-44. Recuperado de https://www.researchgate.net/publication/291072704_Analisis_de_la_calidad_de_varios_cuerpos_de_agua_superficiales_en_el_GAM_y_la_Peninsula_de_Osa_utilizando_el_Indice_Holandes
Camacho, L. A. (2003). Modelación de la calidad del agua en el río Grande de Tárcoles. San José, Costa Rica.
Chan, Y. J.; Chong, M. F.; Law, C. L. & Hassell, D. G. (2009). A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1-2), 1-18. doi: https://doi.org/10.1016/j.cej.2009.06.041
Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill. Recuperado de http://web.ipb.ac.id/~erizal/hidrolika/Chow%20%20OPEN%20CHANNEL%20HYDRAULICS.pdf
Da Rocha, M. P.; Dourado, P. L. R.; Cardoso, C. A. L.; Cândido, L. S.; Pereira, J. G.; de Oliveira, K. M. P. & Grisolia, A. B. (2018). Tools for monitoring aquatic environments to identify anthropic effects. Environmental Monitoring and Assessment, 190(2). doi: https://doi.org/10.1007/s10661-017-6440-2
Epelde, A. M.; Antiguedad, I.; Brito, D.; Juach, E.; Neves, R.; Garneau, C. & Sánchez-Pérez, J. M. (2016). Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale. Journal of Hydrology, 539, 478-494. doi: https://doi.org/10.1016/j.jhydrol.2016.05.066
Fonseca, A.; Botelho, C.; Boaventura, R. A. R. & Vilar, V. J. P. (2014). Integrated hydrological and water quality model for river management: a case study on Lena River. Science of the Total Environment, 485-486, 474-489. doi: https://doi.org/10.1016/j.scitotenv.2014.03.111
Formica, S. M.; Sacchi, G. A.; Campodonico, V. A.; Pasquini, A.; & Cioccale, M. (2015). Modelado de calidad de agua en ríos de montaña con impacto antrópico. Caso de estudio: Sierra Chica de Córdoba, Argentina. Revista Internacional de Contaminación Ambiental, 31(4), 327-341. Recuperado de: http://www.scielo.org.mx/scielo.php?pid=S0188-49992015000400001&script=sci_abstract
Ha, P. T. T.; Kokutse, N.; Duchesne, S.; Villeneuve, J. P.; Bélanger, A.; Hien, H. N. & Bach, D. N. (2017). Assessing and selecting interventions for river water quality improvement within the context of population growth and urbanization: a case study of the Cau River basin in Vietnam. Environment, Development and Sustainability, 19(5), 1701-1729. doi: https://doi.org/10.1007/s10668-016-9822-7
Herrera-Murillo, J. (2017). Informe Estado de la Nación en Desarrollo Sostenible 2017 sobre el uso y estado de los recursos: Recurso Hídrico. San José, Costa Rica: Programa Estado de la Nación. Recuperado de http://repositorio.conare.ac.cr/handle/20.500.12337/1085
Hofstra, N. & Vermeulen, L. C. (2016). Impacts of population growth, urbanisation and sanitation changes on global human Cryptosporidium emissions to surface water. International Journal of Hygiene and Environmental Health, 219(7), 599-605. doi: https://doi.org/10.1016/j.ijheh.2016.06.005
Holguín-González, J. (2014). Estudio de actualización del modelo de calidad del agua del río Palo 2011 tramo puente Guachené - Bocas del Palo. Recuperado de https://crc.gov.co/files/GestionAmbiental/RHidrico/INFORME_MODELACION_DEL_RIO_PALO_CONVENIO_MARCO_25-05-2012.pdf
Hreiz, R.; Latifi, M. A. & Roche, N. (2015). Optimal design and operation of activated sludge processes: state of the art. Chemical Engineering Journal, 281, 900-920. doi: https://doi.org/10.1016/j.cej.2015.06.125
Instituto Meteorológico Nacional. (2015). Reporte histórico de estación meteorológica Santa Lucía, UNA-Heredia 1998-2015. [base de datos]. Datos sin procesar o no publicados.
Langergraber, G. & Muellegger, E. (2005). Ecological Sanitation - A way to solve global sanitation problems? Environment International, 31(3), 433-444. doi: https://doi.org/10.1016/j.envint.2004.08.006
Lee, I.; Hwang, H.; Lee, J.; Yu, N.; Yun, J. & Kim, H. (2017). Modeling approach to evaluation of environmental impacts on river water quality: a case study with Galing River, Kuantan, Pahang, Malaysia. Ecological Modelling, 353, 167-173. doi: https://doi.org/10.1016/j.ecolmodel.2017.01.021
Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J. M. & Swinscoe, T. H. A. (2017). Spatial and seasonal surface water quality assessment in a tropical urban catchment: Burío River, Costa Rica. Water, 9(8), 1-12. doi: https://doi.org/10.3390/w9080558
Mena-Rivera, L.; Vásquez-Bolaños, O.; Gómez-Castro, C.; Fonseca-Sánchez, A.; Rodríguez-Rodríguez, A. y Sánchez-Gutiérrez, R. (2018). Ecosystemic Assessment of Surface Water Quality in the Virilla River: towards Sanitation Processes in Costa Rica. Water, 10(7), 1-16. doi: https://doi.org/10.3390/w10070845
Ministerio de Ambiente y Energía, Ministerio de Salud e Instituto Costarricense de Acueductos y Alcantarillados. Costa Rica (2016). Política Nacional de Saneamiento en Aguas Residuales. San José, Costa Rica: AyA, MINAE, MS. Recuperado de https://www.aya.go.cr/Noticias/Documents/Politica%20Nacional%20de%20Saneamiento%20en%20Aguas%20Residuales%20marzo%202017.pdf
Ministerio de Salud. (2014). Reportes operacionales de aguas residuales vertidas en el río Virilla 2012-2014 [base de datos]. Datos sin procesar o no publicados.
Moriasi, D.; Arnold, J.; Van Liew, M.; Binger, R.; Harmel, R.; & Veith, T. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885-900. https://doi.org/10.13031/2013.23153
Nguyen, T.T.; Keupers, I. & Willems, P. (2018). Conceptual river water quality model with flexible model structure. Environmental Modelling and Software, 104, 102-117. doi: https://doi.org/10.1016/j.envsoft.2018.03.014
Ortiz Malavassi, E. (2009). Atlas Digital de Costa Rica 2008. Instituto Tecnológico de Costa Rica, Costa Rica. Recuperado de https://repositoriotec.tec.ac.cr/bitstream/handle/2238/3140/infor_proyecto_atlas2008.pdf?sequence=1&isAllowed=y
Pathak, D.; Whitehead, P. G.; Futter, M. N. & Sinha, R. (2018). Water quality assessment and catchment-scale nutrient flux modeling in the Ramganga River Basin in north India: an application of INCA model. Science of the Total Environment, 631-632, 201-215. doi: https://doi.org/10.1016/j.scitotenv.2018.03.022
Schosinsky, G. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34-35, 13-30. https://doi.org/10.15517/rgac.v0i34-35.4223
Simionesei, L.; Ramos, T. B.; Brito, D.; Jauch, E.; Leitão, P. C.; Almeida, C. & Neves, R. (2016). Numerical simulations of soil water dynamics under stationary sprinkler irrigation with Mohid-Land. Irrigation and Drainages, 65(1), 98-111. doi: https://doi.org/10.1002/ird.1944
Slaughter, A. R.; Hughes, D. A.; Retief, D. C. H. & Mantel, S. K. (2017). A management-oriented water quality model for data scarce catchments. Environmental Modelling and Software, 97, 93-111. doi: https://doi.org/10.1016/j.envsoft.2017.07.015
Taka, M.; Aalto, J. & Luoto, M. (2015). Spatial Modelling of Stream Water Quality Along an Urban-Rural Gradient. Geografiska Annaler, Series A: Physical Geography, 97(4), 819-834. doi: https://doi.org/10.1111/geoa.12118
Teodosiu, C.; Barjoveanu, G.; Sluser, B. R.; Popa, S. A. E. & Trofin, O. (2016). Environmental assessment of municipal wastewater discharges: a comparative study of evaluation methods. International Journal of Life Cycle Assessment, 21(3), 395-411. doi: https://doi.org/10.1007/s11367-016-1029-5
Trolle, D.; Spigel, B.; Hamilton, D. P.; Norton, N.; Sutherland, D.; Plew, D. & Allan, M. G. (2014). Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake. Environmental Management, 54(3), 479-493. doi: https://doi.org/10.1007/s00267-014-0306-y
UNESCO. (2007). Balance hídrico superficial de Costa Rica. Período: 1970-2002. Montevideo, Uruguay: Programa Hidrológico Internacional. Recuperado de https://www.sueloscr.com/documentos/Balance.PDF
Valcárcel, L.; Borroto, J.; Alberro, N.; Griffith, J.; Derivet, M.; Flores, P.; Cuesta, J.; Rodríguez, M.; Herrero, Z.; Rodríguez, A. & Domínguez, J. (2010). Modelación de la calidad del agua en el segmento medio del río Luyanó. Ciencias Nucleares, (47), 16-23. Recuperado de http://scielo.sld.cu/pdf/nuc/n47/nuc034710.pdf
Vázquez, R., Feyen, L., Feyen, J., & Refsgaard, J. (2002). Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrological Processes, 16, 355-372. https://doi.org/10.1002/hyp.334
Published
2021-01-31
How to Cite
Sánchez-Gutiérrez, R., & Gómez-Castro, C. (2021). Approaching to water quality modeling processes in a subwatershed. The Virilla River case in Costa Rica. Uniciencia, 35(1), 71-89. https://doi.org/10.15359/ru.35-1.5
Section
Original scientific papers (evaluated by academic peers)

Comentarios (ver términos de uso)