Productive Efficiency Analysis: A Comparison of Departments across the Faculties of the University of Atacama




Data envelopment analysis, optimization model, university education, University of Atacama


Introduction. Currently, Public Universities are undergoing important educational transformations in a context where the State is demanding criteria of rationality and economic efficiency. Objective. This study aims to determine the technical efficiency for a set of 14 departments in the faculties of Engineering, Technology, and Humanities that comprise the University of Atacama for the 2020 academic year. Methodology. The proposed methodology is an Input-Oriented DEA-CCR Data Envelopment Analysis with constant returns to scale and a BCC model with variable returns to scale. This type of analysis is a contribution of mathematical programming that transforms numerous measured inputs and outputs into a single sum of efficient productivity (Coll Serrano & Blasco Blasco, 2006). The input variables selected include the annual budget, operating expenses, number of enrolled students, number of academics, years of experience, average teaching load, and supervised theses. The output variables are indexed scientific publications and the Annual Operating Plan. Results. The results showed that departments 2 and 3 of the Technological Faculty must reduce their inputs by 77,8% and 85.1%, respectively, to be on the efficient frontier. In the Faculty of Engineering, there was a better performance in terms of the efficient use of resources. Conclusions. It can be concluded that analyzing interdepartmental productive efficiency is important and allows for improving the decision-making of university authorities.

Author Biographies

Planck Barahona-Urbina, Universidad de Atacama

Académico de la Universidad de Atacama.

Manuel Barahona-Droguett, Universidad de Atacama

Académico de la Universidad de Atacama.


Agasisti, T. & Johnes, G. (2010). Heterogeneity and the evaluation of efficiency: The case of Italian universities. Applied Economics, 42(11), 1365-1375.

Agasisti, T. & Salerno, C. (2007). Assessing the cost efficiency of Italian universities. Education Economics, 15(4), 455-471.

Agasisti, T., Dal Bianco, A. Landoni, P., Sala, A., & Salerno, M. (2011). Evaluating the efficiency of research inacademic departments: An empirical analysis in an Italian region. Higher Education Quarterly, 65(3), 267-289.

Arcelus, F. J. & Coleman. D. F. (1997). An efficiency review of university departments. International Journal of System Science, 28, 721-729.

Banker, R. D., Charnes, A., & Cooper W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-10922.

Barahona P. & Barahona, M. (2020). Hospital efficiency: An application of data envelopment analysis. Global Journal of Medical Research, 20(K7), 43-53.

Buzzigoli, L., Giusti, A., & Viviani, A. (2010). The evaluation of university departments. A case study for Firenze. International Advances in Economic Research, 16(1), 24-38.

Castillo-Arias, I. & Marín-Raventós, G. (2017). Programación matemática para medir eficiencia en el sector educativo. Revista de Matemática: Teoría y Aplicaciones, 24(2), 315-329.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.

Coll Serrano, V. & Blasco Blasco, O. M. (2006). Evaluación de la eficiencia mediante el análisis envolvente de datos. Introducción a los modelos básicos. Universidad de Valencia.

Farrell, M. J. (1957). The measurement of productive eefficicency. Series A, (General). Journal of the Royal Stadistical Society, 120(3), 253-290.

Fernández Gómez, A. (2015). Técnicas estadísticas para la medición de la eficiencia y la productividad total de los factores aplicación al sistema hospitalario español [Tesis Doctoral, Universidad de Sevilla], 1-353.

González-Araya, M. & Verdugo Vásquez, G. (2010). Análisis de eficiencia y productividad de las universidades chilenas mediante análisis y encapsulamiento de datos. Rev. Aporte Santiaguino, 3(2), 245-256.

Halkos, G., Tzeremes, N. G., & Kourtzidis, S. A. (2012). Measuring public owned university departments efficiency: A bootstrapped DEA approach. Journal of Economics and Econometrics, 55(2), 1-24.'_Efficiency_A_Bootstrapped_DEA_Approach

Johnes, G. & Johnes, J. (1993). Measuring the research performance of UK economics departments: An application of data envelopment analysis. Oxford Economic Papers, 45(2), 332-347.

Kao, C. & Hung, H.-T. (2008). Efficiency analysis of university departments: An empirical study. Omega, 36(4), 653-664.

Leitner, K.-H., Prikoszovits, J., Schaffhauser-Linzatti, M., Stowasser, R., & Wagner, K. (2007). The impact of sizeand specialisation on universities’ department performance: A DEA analysis applied to Austrian universities. Higher Education, 53(4), 517-538.

Madden, G., Savage, S., & Kemp, S. (1997). Measuring public sector efficiency: A study of economics departments at australian universities. Education Economics, 5(2), 153-168.

Navarro Chávez, J. C. L., Gómez Monge, R., & Torres Hernández, Z. (2016). Las universidades en México: Una medida de su eficiencia a través del análisis de la envolvente de datos con bootstrap. Acta Universitraia. Multidisciplinary Scientific Journal, 26(6), 60-69.

Nunez, N. A. & Cornejo Meza, G. (2018). Haciendo mucho con poco: Eficiencia de la investigación científica en el Perú. Revista Espacios, 39(26), 1-11.

Pesenti, R. & Ukovich, W. (1996). Evaluating academic activities using DEA. Università di Trieste, 1-17.

Quispe Fernández, G. M. & Jordán Minaya, W. R. (2017). Medición de la eficiencia técnica en las universidades autónomas del sistema universitario boliviano: Aplicación del análisis envolvente de datos (DEA). Revista Espacios, 38(45), 1-20.

Ramírez-Gutiérrez, Z., Barrachina-Palanca, M., & Ripoll-Feliu, V. (2020). Eficiencia en la educación superior. Estudio empírico en universidades públicas de Colombia y España. Revista de Administração Pública, 54(3), 468-500.

Sinuany-Stern, Z., Mehrez, A., & Barboy, A. (1994). Academic departments efficiency via DEA. Computers & Operations Research, 21(5), 543-556.

Tauer, L. W., Fried, H. O., & Fry, W. (2007). Measuring efficiencies of academic departments within a college. Education Economics, 15(4), 473-489.

Thursby, J. G. (2000). What do we say about ourselves and what does it mean? Yet another look at Economics department research. Journal of Economic Literature, 38(2), 383-404.

Tyagi P., Yadav, S., & Singh, S. P. (2009). Relative performance of academic departments using DEA with sensitivity analysis. Evaluation and Program Planning, 32(2), 168-177.

Villarreal, F. & Tohmé, F. (2017). Análisis envolvente de datos: Un caso de estudio para una universidad argentina. Estudios Gerenciales, 33(144), 302-308.

Zafiropoulos, K. & Vrana, V. (2008). Service quality assessment in a greek higher education institute, Journal of Business Economics and Management, 9(1), 33-45.



How to Cite

Productive Efficiency Analysis: A Comparison of Departments across the Faculties of the University of Atacama (P. Barahona-Urbina & M. Barahona-Droguett , Trans.). (2023). Revista Electrónica Educare, 27(2), 1-17.



Journal Articles (Peer Reviewed Section)

How to Cite

Productive Efficiency Analysis: A Comparison of Departments across the Faculties of the University of Atacama (P. Barahona-Urbina & M. Barahona-Droguett , Trans.). (2023). Revista Electrónica Educare, 27(2), 1-17.

Comentarios (ver términos de uso)