Topographical measurements on atomically flat surfaces at room conditions through scanning tunneling microscope, a didactic insight

Keywords: scanning tunneling microscope, HOPG, surfaces, Au (111), calibration


One of the great advances in nanotechnology has been the development of the scanning tunneling microscope, a tool that permits the manipulation of atoms and molecules, the study of electron transport in a single atom, and the generation of images with atomic precision in electrically conductive surfaces. In this paper we describe the tunneling microscope, its operation, a calibration methodology, and how to make topographic measurements on flat surfaces with atomic resolution at room conditions. This is done from a didactic point of view, intended to assist new users or researchers unfamiliar with the technique. Depending on the type of measurement and calibration, we used two conductive samples, gold (111) oriented along the crystallographic direction, and highly oriented pyrolytic graphite (HOPG).


Arrandee. (2016). Arrandee - gold substrates - Au (111). [Online]. Recuperado de:
Barth, J. V.; Brune, H., Ertl, G. y Behm, R. J. (1990). Scanning tunneling microscopy observations on the reconstructed Au (111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Physical Review B, 42(15), 9307-9318. Doi:
Binnig, G. y Rohrer, H. (1987). Scanning tunneling microscopy - from birth to adolescence. Reviews of Moderns Physics, 59(3), 615-625. Doi:
Binnig, G.; Rohrer, H.; Gerber, Ch. y Weibel, E. (1982). Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 49(1), 57-61. Doi:
Chang, H. y Bard, A. J. (1991). Observation and Characterization by Scanning Tunneling Microscopy of Structures Generated by Cleaving Highly Oriented Pyrolytic Graphite. Langmuir, 7(6), 1143-1153. Doi:
Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J. y Baro, A. M. (2007). WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78(013705), 1-9. Doi:
Novoselov, K. S.; Geim, A. K; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V. y Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. Doi:
Riquelme Ballesta, J. J. (2008). Propiedades mecánicas y transporte electrónico en nanoestructuras metálicas a bajas temperaturas. (Tesis doctoral). Universidad Autónoma de Madrid, España. Recuperado de file:///C:/Users/CARLOS~2/AppData/Local/Temp/documentop.com_propiedades-mecanicas-y-transporte-electronico-en-_598bbefd1723dd5c695f0e93.pdf
Rubio-Verdu, C.; Saenz-Arce, G.; Martínez-Asencio, J.; Milan, D. C.; Moaied, M.; Palacios, J. J.; Caturla, M. J. y Untiedt, C. (2017). Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. Physical Chemistry Chemical Physics, 19(11), 8061-8068. Doi:
Sabater, C. (2013). Theoretical and experimental study of electronic transport and structure in atomic-sized contacts. (Tesis doctoral). Universidad de Alicante, España. Recuperado de
Sáenz-Arce, G. (2011). Estudio de estructuras de tamaño atómico mediante un STM con detección resonante de fuerzas. (Tesis doctoral). Universidad de Alicante, España. Recuperado de
SPI Supplies (2017). SPI Supplies - HOPG. [Online]. Recuperado de
Untiedt, C.; Yanson, A. I.; Grande, R.; Rubio-Bollinger, G.; Agraït, N.; Vieira, S. y Ruitenbeek, J. M. van. (2002). Calibration of the length of a chain of single gold atoms. Physical Review B, 66(85418), 1-6. Doi:
How to Cite
Delgado-Jiménez, L., Chacón-Vargas, S., Sabater-Piqueres, C., & Sáenz-Arce, G. (2019). Topographical measurements on atomically flat surfaces at room conditions through scanning tunneling microscope, a didactic insight. Uniciencia, 33(1), 30-42.
Original scientific papers (evaluated by academic peers)