A Proposal of Speed Zone Classification in Basketball: A New-Criteria Based on Maximum Registered Values





Team sports, speed zones, sprint, high speed running, intensity workload


The quantification of training load has become mandatory for coaches and team staff. Within the analyzed variables, distance covered at different speed zones is one of the most studied. However, there is no consensus in the definition of speed zones in the published articles about each team sport, so it makes difficult a comparison between them. Therefore, the purposes of this article were to establish a criteria standard in the classification of speed zones in team sports and to analyze its practical application in basketball. Five speed categories were established for basketball following the methodology described above: 0-10km/h, >10-13.8 km/h, >13.8-17.6 km/h, >17.6-21.5 km/h, and >21.5 km/h. The results showed differences between periods in high-speed displacements and sprints, maximum speed, total decelerations, and accelerations. In conclusion, the categorization of workload based on standard deviation according to maximum speed could be a viable option to individualize the analysis of distance covered per speeds in team sports such as basketball. Its use may lead to a better understanding and contextualization of the locomotion data in specific sports and teams.


Aguiar, M., Botelho, G., Gonçalves, B., & Sampaio, J. (2013). Physiological Responses and Activity Profiles of Football Small-Sided Games: Journal of Strength and Conditioning Research, 27(5), 1287–1294. https://doi.org/10.1519/JSC.0b013e318267a35c

Akenhead, R., Harley, J., & Tweddle, S. (2016). Examining the External Training Load of an English Premier League Football Team With Special Reference to Acceleration. Journal of Strength and Conditioning Research, 30(9), 2424–2432. https://doi.org/10.1519/JSC.0000000000001343

Akenhead, R., & Nassis, G. (2016). Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. International Journal of Sports Physiology and Performance, 11(5), 587–593. https://doi.org/10.1123/ijspp.2015-0331

Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M., & Al-Khalifa, H. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5), 707. https://doi.org/10.3390/s16050707

Aughey, R. (2010). Australian football player work rate: Evidence of fatigue and pacing? International Journal of Sports Physiology and Performance, 5(3), 394–405. https://doi.org/10.1123/ijspp.5.3.394

Bangsbo, J., Nørregaard, L., & Thorsø, F. (1991). Activity profile of competition soccer. Canadian Journal of Sport Sciences = Journal Canadien Des Sciences Du Sport, 16(2), 110–116. https://pubmed.ncbi.nlm.nih.gov/1647856/

Barros, R. M., Misuta, M. S., Menezes, R. P., Figueroa, P. J., Moura, F. A., Cunha, S. A., Anido, R., & Leite, N. J. (2007). Analysis of the distances covered by first division Brazilian soccer players obtained with an automatic tracking method. Journal of Sports Science & Medicine, 6(2), 233-242. https://www.ncbi.nlm.nih.gov/pubmed/24149334

Bastida-Castillo, A., Gómez-Carmona, C., De la Cruz Sánchez, E., & Pino-Ortega, J. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time–motion analyses in soccer. European Journal of Sport Science, 18(4), 450–457. https://doi.org/10.1080/17461391.2018.1427796

Bastida-Castillo, A., Gómez-Carmona, C., Pino-Ortega, J., & de la Cruz Sánchez, E. (2017). Validity of an inertial system to measure sprint time and sport task time: A proposal for the integration of photocells in an inertial system. International Journal of Performance Analysis in Sport, 17(4), 600–608. https://doi.org/10.1080/24748668.2017.1374633

Bastida-Castillo, A., Gómez-Carmona, C., De la Cruz-Sánchez, E., Reche-Royo, X., Ibáñez, S., & Pino Ortega, J. (2019). Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Applied Sciences, 9(5), 939. https://doi.org/10.3390/app9050939

Bradley, P., Di Mascio, M., Peart, D., Olsen, P., & Sheldon, B. (2010). High-intensity activity profiles of elite soccer players at different performance levels. Journal of Strength and Conditioning Research, 24(9), 2343–2351. https://doi.org/10.1519/JSC.0b013e3181aeb1b3

Bradley, P., Lago-Peñas, C., Rey, E., & Gomez, A. (2013). The effect of high and low percentage ball possession on physical and technical profiles in English FA Premier League soccer matches. Journal of Sports Sciences, 31(12), 1261–1270. https://doi.org/10.1080/02640414.2013.786185

Bradley, P., & Vescovi, J. (2015). Velocity thresholds for women’s soccer matches: Sex specificity dictates high-speed running and sprinting thresholds - Female Athletes in Motion (FAiM). International Journal of Sports Physiology and Performance, 10(1), 112–116. https://doi.org/10.1123/ijspp.2014-0212

Carling, C., Le Gall, F., & Dupont, G. (2012). Analysis of repeated high-intensity running performance in professional soccer. Journal of Sports Sciences, 30(4), 325–336. https://doi.org/10.1080/02640414.2011.652655

Casamichana, D., Morencos, E., Romero-Moraleda, B., & Gabbett, T. (2018). The Use of Generic and Individual Speed Thresholds for Assessing the Competitive Demands of Field Hockey. Journal of Sports Science & Medicine, 17(3), 366–371. https://www.ncbi.nlm.nih.gov/pubmed/30116109

Clarke, A., Anson, J., & Pyne, D. (2015). Physiologically based GPS speed zones for evaluating running demands in Women’s Rugby Sevens. Journal of Sports Sciences, 33(11), 1101–1108. https://doi.org/10.1080/02640414.2014.988740

Clemente, F., Nikolaidis, P., Van Der Linden, C. & Silva, B. (2017). Effects of Small-Sided Soccer Games on Internal and External Load and Lower Limb Power: A Pilot Study in Collegiate Players. Human Movement, 18(1), 50-57. https://doi.org/10.1515/humo-2017-0007

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.

Coutinho, D., Gonçalves, B., Figueira, B., Abade, E., Marcelino, R., & Sampaio, J. (2015). Typical weekly workload of under 15, under 17, and under 19 elite Portuguese football players. Journal of Sports Sciences, 33(12), 1229–1237. https://doi.org/10.1080/02640414.2015.1022575

Cunniffe, B., Proctor, W., Baker, J., & Davies, B. (2009). An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. The Journal of Strength & Conditioning Research, 23(4), 1195–1203. https://doi.org/10.1519/jsc.0b013e3181a3928b

Datson, N., Drust, B., Weston, M., Jarman, I., Lisboa, P., & Gregson, W. (2017). Match Physical Performance of Elite Female Soccer Players During International Competition. Journal of Strength and Conditioning Research, 31(9), 2379–2387. https://doi.org/10.1519/JSC.0000000000001575

De Oliveira, M., Caetano, F., Pereira, T., De Souza, N., Moreira, G., Nakamura, F., Cunha, S., & Moura, F. (2014). Analysis of the distance covered by Brazilian professional futsal players during official matches. Sports Biomechanics, 13(3), 230–240. https://doi.org/10.1080/14763141.2014.958872

Di Salvo, V., Baron, R., Tschan, H., Calderon Montero, F., Bachl, N., & Pigozzi, F. (2007). Performance Characteristics According to Playing Position in Elite Soccer. International Journal of Sports Medicine, 28(3), 222–227. https://doi.org/10.1055/s-2006-924294

Dwyer, D., & Gabbett, T. (2012). Global positioning system data analysis: Velocity ranges and a new definition of sprinting for field sport athletes. Journal of Strength and Conditioning Research, 26(3), 818–824. https://doi.org/10.1519/JSC.0b013e3182276555

Fessi, M., Zarrouk, N., Di Salvo, V., Filetti, C., Barker, A., & Moala, W. (2016). Effects of tapering on physical match activities in professional soccer players. Journal of Sports Sciences, 34(24), 2189–2194. https://doi.org/10.1080/02640414.2016.1171891

Garrett, J., Gunn, R., Eston, R., Jakeman, J., Burgess, D & Norton, K. (2019). The effects of fatigue on the running profile of elite team sport athletes. A systematic review and meta-analysis. The Journal of Sports Medicine and Physical Fitness 59(8),1328-1338. https://doi.org/10.23736/S0022-4707.19.09356-3.

Gómez-Carmona, C., Gamonales, J., Pino-Ortega, J., & Ibáñez, S. (2018). Comparative analysis of load profile between small-sided games and official matches in youth soccer players. Sports, 6(4), 173. https://doi.org/10.3390/sports6040173

Gómez-Carmona, C., Bastida-Castillo, A., García-Rubio, J., Ibáñez, S. J., & Pino-Ortega, J. (2019). Static and dynamic reliability of WIMU PROTM accelerometers according to anatomical placement. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 233(2), 238–248. https://doi.org/10.1177/1754337118816922

Gómez-Carmona, C., Bastida-Castillo, A., Ibáñez, S., & Pino-Ortega, J. (2020). Accelerometry as a method for external workload monitoring in invasion team sports. A systematic review. PLoS ONE, 15(8), e0236643. https://doi.org/10.1371/journal.pone.0236643

Greig, M., Emmerson, H., & McCreadie, J. (2019). Quantifying Functional Ankle Rehabilitation Progression Criteria Using GPS: A Preliminary Study. Journal of Sport Rehabilitation, 28(7), 729-734. https://doi.org/10.1123/jsr.2018-0045

Halouani, J., Chtourou, H., Gabbett, T., Chaouachi, A., & Chamari, K. (2014). Small-Sided Games in Team Sports Training: A Brief Review. Journal of Strength and Conditioning Research, 28(12), 3594–3618. https://doi.org/10.1519/JSC.0000000000000564

Hunter, F., Bray, J., Towlson, C., Smith, M., Barrett, S., Madden, J., Abt, G., & Lovell, R. (2015). Individualisation of time-motion analysis: A method comparison and case report series. International Journal of Sports Medicine, 36(1), 41–48. https://doi.org/10.1055/s-0034-1384547

Impellizzeri, F., Marcora, S., & Coutts, A. (2019). Internal and External Training Load: 15 Years On. International Journal of Sports Physiology and Performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935

Jaspers, A., Brink, M., Probst, S., Frencken, W., & Helsen, W. (2017). Relationships Between Training Load Indicators and Training Outcomes in Professional Soccer. Sports Medicine, 47(3), 533–544. https://doi.org/10.1007/s40279-016-0591-0

Jennings, D., Cormack, S., Coutts, A., & Aughey, R. (2012). GPS Analysis of an International Field Hockey Tournament. International Journal of Sports Physiology and Performance, 7(3), 224–231. https://doi.org/10.1123/ijspp.7.3.224

Jeong, T., Reilly, T., Morton, J., Bae, S., & Drust, B. (2011). Quantification of the physiological loading of one week of “pre-season” and one week of “in-season” training in professional soccer players. Journal of Sports Sciences, 29(11), 1161–1166. https://doi.org/10.1080/02640414.2011.583671

Johnston, R., Gibson, N., Twist, C., Gabbett, T., MacNay, S., & MacFarlane, N. (2013). Physiological responses to an intensified period of rugby league competition. Journal of Strength and Conditioning Research, 27(3), 643–654. https://doi.org/10.1519/JSC.0b013e31825bb469

Luteberget, L., Spencer, M., & Gilgien, M. (2018). Validity of the Catapult ClearSky T6 Local Positioning System for Team Sports Specific Drills, in Indoor Conditions. Frontiers in Physiology, 9, 115. https://doi.org/10.3389/fphys.2018.00115

Macutkiewicz, D., & Sunderland, C. (2011). The use of GPS to evaluate activity profiles of elite women hockey players during match-play. Journal of Sports Sciences, 29(9), 967–973. https://doi.org/10.1080/02640414.2011.570774

Makaje, N., Ruangthai, R., Arkarapanthu, A., & Yoopat, P. (2012). Physiological demands and activity profiles during futsal match play according to competitive level. The Journal of Sports Medicine and Physical Fitness, 52(4), 366-374.

Malone, J., Di Michele, R., Morgans, R., Burgess, D., Morton, J., & Drust, B. (2015). Seasonal training-load quantification in elite English premier league soccer players. International Journal of Sports Physiology and Performance, 10(4), 489–497. https://doi.org/10.1123/ijspp.2014-0352

Malone, S., Owen, A., Mendes, B., Hughes, B., Collins, K., & Gabbett, T. (2018). High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? Journal of Science and

Medicine in Sport, 21(3), 257–262. https://doi.org/10.1016/j.jsams.2017.05.016

Meylan, C., Trewin, J., & McKean, K. (2017). Quantifying Explosive Actions in International Women’s Soccer. International Journal of Sports Physiology and Performance, 12(3), 310–315. https://doi.org/10.1123/ijspp.2015-0520

Miñano-Espin, J., Casáis, L., Lago-Peñas, C., & Gómez-Ruano, M. (2017). High Speed Running and Sprinting Profiles of Elite Soccer Players. Journal of Human Kinetics, 58(1), 169–176. https://doi.org/10.1515/hukin-2017-0086

Mohr, M., Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. Journal of Sports Sciences, 21(7), 519–528. https://doi.org/10.1080/0264041031000071182

Mujika, I., Halson, S., Burke, L., Balagué, G., & Farrow, D. (2018). An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. International Journal of Sports Physiology and Performance, 13(5), 538–561. https://doi.org/10.1123/ijspp.2018-0093

Naser, N., Ali, A., & Macadam, P. (2017). Physical and physiological demands of futsal. Journal of Exercise Science & Fitness, 15(2), 76–80. https://doi.org/10.1016/j.jesf.2017.09.001

Oliva-Lozano, J., Rojas-Valverde, D., Gómez-Carmona, C., Fortes, V., & Pino-Ortega, J. (2021). Impact of contextual variables on the representative external load profile of Spanish professional soccer match-play: A full season study. European Journal of Sport Science, 21(4), 497-506. https://doi.org/10.1080/17461391.2020.1751305

Park, L., Scott, D., & Lovell, R. (2019). Velocity zone classification in elite women’s football: Where do we draw the lines? Science and Medicine in Football, 3(1), 21–28. https://doi.org/10.1080/24733938.2018.1517947

Parlebas, P. (2002). Elementary mathematic modelization of games and sports. Bridging the gap between empirical sciences and theoretical research in the social sciences. In The Explanatory Power of Models (pp. 197–228). Kluwer Academic.

Pino-Ortega, J., Gómez-Carmona, C., Nakamura, F., & Rojas-Valverde, D. (2020). Setting Kinematic Parameters That Explain Youth Basketball Behavior: Influence of Relative Age Effect According to Playing Position. Journal of Strength & Conditioning Research, 36(3), 820-826. https://doi.org/10.1519/jsc.0000000000003543

Pino-Ortega, J., Rojas-Valverde, D., Gómez-Carmona, C., Bastida-Castillo, A., Hernández-Belmonte, A., García-Rubio, J., Nakamura, F., & Ibáñez, S. (2019). Impact of Contextual Factors on External Load During a Congested-Fixture Tournament in Elite U’18 Basketball Players. Frontiers in Psychology, 10, 1-11. https://doi.org/10.3389/fpsyg.2019.01100

Rampinini, E., Coutts, A., Castagna, C., Sassi, R., & Impellizzeri, F. (2007). Variation in Top Level Soccer Match Performance. International Journal of Sports Medicine, 28(12), 1018–1024. https://doi.org/10.1055/s-2007-965158

Randers, M., Nielsen, J., Bangsbo, J, & Krustrup, P. (2014). Physiological response and activity profile in recreational small-sided football: No effect of the number of players. Scandinavian Journal of Medicine & Science in Sports, 24(1), 130–137. https://doi.org/10.1111/sms.12232

Reche-Soto, P., Cardona-Nieto, D., Diaz-Suarez, A., Bastida-Castillo, A., Gomez-Carmona, C., Garcia-Rubio, J., & Pino-Ortega, J. (2019). Player Load and Metabolic Power Dynamics as Load Quantifiers in Soccer. Journal of Human Kinetics, 69(1), 259-269. https://sciendo.com/doi/10.2478/hukin-2018-0072

Reina-Román, M., García-Rubio, J., Feu, S., & Ibáñez, S. (2019). Training and Competition Load Monitoring and Analysis of Women’s Amateur Basketball by Playing Position: Approach Study. Frontiers in Psychology, 9, 2689. https://doi.org/10.3389/fpsyg.2018.02689

Rojas-Valverde, D., Gómez-Carmona, C., Fernández-Fernández, J., García-López, J., García-Tormo, V., Cabello-Manrique, D., & Pino-Ortega, J. (2020). Identification of games and sex-related activity profile in junior international badminton. International Journal of Performance Analysis in Sport, 20(3), 323–338. https://doi.org/10.1080/24748668.2020.1745045

Rojas-Valverde, D., Gómez-Carmona, C., Gutiérrez-Vargas, R., & Pino-Ortega, J. (2019). From big data mining to technical sport reports: The case of inertial measurement units. BMJ Open Sport & Exercise Medicine, 5(1), e000565. https://doi.org/10.1136/bmjsem-2019-000565

Rojas-Valverde, D., Pino-Ortega, J., Gómez-Carmona, C., & Rico-González, M. (2020). A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science. International Journal of Environmental Research and Public Health, 17(23), 8712. https://doi.org/10.3390/ijerph17238712

Sampaio, J., Gonçalves, B., Rentero, L., Abrantes, C., & Leite, N. (2014). Exploring how basketball players’ tactical performances can be affected by activity workload. Science & Sports, 29(4), e23–e30. https://doi.org/10.1016/j.scispo.2013.05.004

Suarez-Arrones, L., Nuñez, F., Portillo, J., & Mendez-Villanueva, A. (2012). Running Demands and Heart Rate Responses in Men Rugby Sevens: Journal of Strength and Conditioning Research, 26(11), 3155–3159. https://doi.org/10.1519/JSC.0b013e318243fff7

Svilar, L., Castellano, J., Jukic, I., & Casamichana, D. (2018). Positional Differences in Elite Basketball: Selecting Appropriate Training-Load Measures. International Journal of Sports Physiology and Performance, 13(7), 947–952. https://doi.org/10.1123/ijspp.2017-0534

Sweeting, A., Cormack, S., Morgan, S., & Aughey, R. (2017). When Is a Sprint a Sprint? A Review of the Analysis of Team-Sport Athlete Activity Profile. Frontiers in Physiology, 8, 432. https://doi.org/10.3389/fphys.2017.00432

Vázquez-Guerrero, J., Fernández-Valdés, B., Jones, B., Moras, G., Reche, X., & Sampaio, J. (2019). Changes in physical demands between game quarters of U18 elite official basketball games. PLoS One, 14(9), e0221818. https://doi.org/10.1371/journal.pone.0221818



How to Cite

Rojas-Valverde, D., Gómez-Carmona, C., Rico-González, M., & Pino-Ortega, J. (2022). A Proposal of Speed Zone Classification in Basketball: A New-Criteria Based on Maximum Registered Values. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 19(2), 1-14. https://doi.org/10.15359/mhs.19-2.2

How to Cite

Rojas-Valverde, D., Gómez-Carmona, C., Rico-González, M., & Pino-Ortega, J. (2022). A Proposal of Speed Zone Classification in Basketball: A New-Criteria Based on Maximum Registered Values. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 19(2), 1-14. https://doi.org/10.15359/mhs.19-2.2

Comentarios (ver términos de uso)

Most read articles by the same author(s)