Effect of firefighter boots and viscoelastic insoles on the impact force of the ground reaction force’s vertical component

  • Jesús Cámara-Tobalina Universidad del País Vasco, Spain
Keywords: Cushioning, insoles, biomechanics


The aims of the present study were to determine the effect of firefighter's boots on the vertical component of the ground reaction force (GRF) at heel strike, also known as heel strike transient and to analyze the effect of the viscoelastic insoles placed into the firefighter’s boots on this force during the gait. The magnitude of the impact force (FZI) from the vertical ground reaction force, the time to the production of this force (TZI) and the loading rate (GC) were registered. 39 firefighters without any pathology during 2 years before the study were recruited. Three different walking conditions were tested: 1) gait with firefighter's boots, 2) gait with firefighter's boots and viscoelastic insoles and 3) gait with sport shoes. The results showed a higher production and magnitude of the impact force during gait with firefighter's boots than during gait with sport shoes (13,1 vs. 2,6 % of occurrence of the impact force and 61,39 ± 35,18 %BW (body weight) vs. 49,38 ± 22,99 %BW, respectively). The gait with viscoelastic insoles placed into the firefighter's boots did not show significant differences in any of the parameters characterizing the impact force compared to the gait without insoles. The results of this study show a lower cushioning of the impact force during the gait with firefighter's boots in comparison to the gait with sport shoes and the inefficiency of the viscoelastic insoles placed inside the firefighter's boots to ameliorate the cushioning of the impact force at natural walking speed.


Download data is not yet available.

Author Biography

Jesús Cámara-Tobalina, Universidad del País Vasco
Facultad de Ciencias del Deporte


Aguinaldo, A., Litavish, M., & Morales, A. (2002). Comparison of transient force attenuation between three types of heel cushions used in athletic footwear. Gait & Posture, 16(s1), 100-101.

Bates, B. T. (1984, September 17-19). Proceedings of the 37th Annual Conference on Engineering in Medicine and Biology. Paper presented at the Overview: The evaluaton and effetcs of heel strike, Los Ángeles, California.

Bennett, M. B., & Ker, R. F. (1990). The mechanical properties of the human subcalcaneal fat pad in compression. Journal of Anatomy, 171(3), 131-138.

Carmichael, & Whittle, M. W. (1999). Gender differences in the heelstrike transient. Gait & Posture, (9), 144-145.

Cavanagh, P. R., Williams, K. R., & Clark, T. E. (1979). A comparison of ground reaction forces during walking barefoot and in shoes. In A. Morecki, K. Fidelus, K. Kedzior & A. Wit (Eds.), Biomechanics VII-B (pp. 151-156). Baltimore: University Park Press.

Chao, E. Y., Laughman, R. K., Schneider, E., & Stauffer, R. N. (1983). Normative data of knee joint motion and ground reaction forces in adult level walking. Journal of Biomechanics, 16(3), 219-233. https://doi.org/10.1016/0021-9290(83)90129-X

Esenyel, M., Walden, G., Gitter, A., Walsh, N. E., & Karacan, I. (2004). Gait characteristics with and without shoes. Türkiye Fiziksel Tıp ve Rehabilitasyon Dergisi., 50(2), 33-37.

Evans, G. W. (1982). Stress fractures at Commando Trainning Centre Royal Marines, Lymspotine - A retrospective survey (september 1979 - october 1981). Journal of the Royal Naval Medical Service, 68, 77-81.

Folman, Y., Wosk, A., Voloshin, A., & Liberty, S. (1986). Cyclic impacts on heel strike: a possible biomechanical factor in the etiology of degenerative disease of the human locomotor system. Archives of Orthopaedic and Trauma Surgery, 104, 363-365. https://doi.org/10.1007/BF00454431

Folman, Y., Wosk, J., Shabat, S., & Gepstein, R. (2004). Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. Preventive Medicine, 39(2), 351-354. https://doi.org/10.1016/j.ypmed.2004.01.030

Gill, H. S., & O´Connor, J. J. (2003a). Heelstrike and the pathomechanics of osteoarthrosis: a pilot gait study. Journal of Biomechanics, (36), 1625-1631. https://doi.org/10.1016/S0021-9290(03)00189-1

Gill, H. S., & O´Connor, J. J. (2003b). Heelstrike and the pathomechanics of osteoarthrosis: a simulation study. Journal of Biomechechanics, (36), 1617-1624.

Goble, D. J., Marino, G. W., & Potvin, J. R. (2003). The Influence of Horizontal Velocity on Interlimb Symmetry in Normal Walking. Human Movement Science, 22, 271-283. https://doi.org/10.1016/S0167-9457(03)00047-2

Hettinga, B. A., Stefanyshin, D., Fairburn, J. C., & Worobets, J. T. (2005). The 7th Symposium on Footwear Biomechanics. Paper presented at the Biomechanical effects of hiking on a non-uniform surface, Cleveland.

Hreljac, A., & Marshall, R. N. (2000). Algorithms to determine event timing during normal walking using kinematic data. Journal of Biomechanics, 33, 783-786. https://doi.org/10.1016/S0021-9290(00)00014-2

Hull, M. L., Brewer, R., & Hawkins, D. (1995). A New Force Plate Design Incorporating Octagonal Strain Rings. Journal of Applied Biomechanics, 11, 311-321. https://doi.org/10.1123/jab.11.3.311

IBV. (2004). NedAMH/IBV Análisis de la Marcha Humana Manual de usuario. Versión 2.1. Valencia: Instituto de Biomecánica de Valencia. ISO, ISO 20345:2004/Amd 1:2007 (ISO, 2007)

Jefferson, R. J., Collins, J. J., Whittle, M. W., Radin, E. L., & O´Connor, J. (1990). The role of the quadriceps in controlling impulsive forces around heel strike. Proceedings of the Institution of Mechanical Engineers, 204, 21-28. https://doi.org/10.1243/PIME_PROC_1990_204_224_02

Jorgensen, U., & Bojsen-Moller, F. (1989). Shock absobency of factors in the shoe/heel interaction - with special focus on role of the heel pad. Foot & Ankle, 9(11), 294-299. https://doi.org/10.1177/107110078900900607

Jorgensen, U., & Ekstrand, J. (1988). Significance of heel pad confinement for the shock absorption at heel strike. International Journal of Sports Medicine, 9, 468-473. https://doi.org/10.1055/s-2007-1025053

Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11, 253-259. https://doi.org/10.1016/0268-0033(95)00068-2

Lafortune, M. A., & Henning, E. M. (1992). Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clinical Biomechanics, 7, 181-184. https://doi.org/10.1016/0268-0033(92)90034-2

Lafortune, M. A., Lake, M., & Hennig, E. M. (1996). Differential shock transmission response of the human body to impact severity and lower limb posture. Journal of Biomechanics, 29(12), 1531-1537. https://doi.org/10.1016/S0021-9290(96)80004-2

Lake, M., & Robinson, M. (2005). The 7th Symposium on Footwear Biomechanics. Paper presented at the Biomechanics of walking in different shoes: a comparison between overground and treadmill testing protocols, Cleveland, Ohio, USA.

Lequesne, M. G., Dang, N., & Lane, N. E. (1997). Sport practice and osteoarthritis of the limbs. Osteoarthritis Cartilage, 5(2), 75-86. https://doi.org/10.1016/S1063-4584(97)80001-5

Light, L. H. (1979). Potential implications of heel strike transients. Journal of Physiology, 292, 31-32.

Light, L. H., MacLellan, G. E., & Klenerman, L. (1980). Skeletal transients on heel strike in normal walking with different footwear. Journal of Biomechanics, 13, 477-480. https://doi.org/10.1016/0021-9290(80)90340-1

Martin, P. E., & Marsh, A. P. (1992). Step length and frequency effects on ground reaction forces during walking. Technical note. Journal of Biomechanics, 25(10), 1237-1239. https://doi.org/10.1016/0021-9290(92)90081-B

McCaw, S. T., Heil, M. E., & Hamill, J. (2000). The effect of comments about shoe construction on impact forces during walking. Medicine & Science of Sport & Exercise, 32(7), 1258-1164. https://doi.org/10.1097/00005768-200007000-00012

Menz, H. B., Latt, M. D., Tiedemann, A., Mun San Kwan, M., & Lord, S. R. (2004). Reliability of the Gaitrite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait & Posture, 20, 20-25. https://doi.org/10.1016/S0966-6362(03)00068-7

Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Age-Related Differences in Walking Stability. Age and Ageing, 32(2), 137-142. https://doi.org/10.1093/ageing/32.2.137

Mercer, J. A., & Vance, J. (2002, May). Spring-boots can reduce impact in runners. Biomechanics

Milgrom, C., Giladi, M., Kashtan, H., Simkin, A., Chisin, R., & Marguiles, J. (1985). A prospective study of a shock absorbing arthrotic device on the incidence of stress fractures in military recruits. Foot and Ankle, 6, 101-104. https://doi.org/10.1177/107110078500600209

Mills, P. M., & Barrett, R. S. (2001). Swing Phase Mechanics of Healthy Young and Elderly Men. Human Movement Science, 20, 427-446. https://doi.org/10.1016/S0167-9457(01)00061-6

Murray, M. P., Kory, R. C., Clarkson, B. H., & Sepic, S. B. (1966). Comparison of free and fast speed walking patterns of normal men. American Journal of Physical Medicine & Rehabilitation, 45(1), 8-24. https://doi.org/10.1097/00002060-196602000-00002

Nigg, B., Cole, G., & Bruggemann, P. (1995). Impact forces during heel-toe running. Journal of Applied Biomechanics, 11, 407-432. https://doi.org/10.1123/jab.11.4.407

Oeffinger, D., Brauch, B., Cranfill, S., Hisle, C., Wynn, C., Hicks, R. (1999). Comparison of gait with and without shoes in children. Gait & Posture, 9, 95-100. https://doi.org/10.1016/S0966-6362(99)00005-3

Pardo Merino, A. y Ruiz Díaz, M. Á. (2002). SPSS 11. Guía para el análisis de datos. Madrid: Mc Graw Hill.

Payne, C., Zammitt, G., & Patience, D. (2005). 7th Symposium on Footwear Biomechanics. Paper presented at the Predictors of a Response to Windlass Mechanism Enhancing Running Shoes, Cleveland, Ohio, USA.

Perry, J. (1992). Gait Analysis. Normal and Pathological Function. Yorba Linda, CA.: Slack incorporated.

Pollo, F. E., Gowling, T. L., & Jackson, R. W. (1999). Walking boot design: a gait analysis study. Orthopedics, 22(5), 503-507.

Pratt, D. J., Rees, P. H., & Rodgers, C. (1986). Assessment of some shock absorbing insoles (technical note). Prosthetics and Orthotics International, 10, 43-45.

Radin, E. L., Paul, I. L., & Rose, R. M. (1972). Role of mechanical factors in the pathogenesis of primary osteoarthritis. Lancet, 2, 519-522. https://doi.org/10.1016/S0140-6736(72)90179-1

Sánchez Lacuesta, J. J., J.M., P. P., Hoyos Fuentes, J. V., Viosca Herreo, E., Soler Gracia, C. y Comín Clavijo, M. (1999). Biomecánica de la Marcha Humana y Patológica (1 ed.). Valencia: Instituto de Biomecánica de Valencia (IBV).

Sloss, R. (2002). The effects of foot orthoses on othe ground reaction forces during walking. Part 1. The Foot, 11, 205-214. https://doi.org/10.1054/foot.2001.0713

Steinbach, H. L., & Russel, W. (1964). Measurement of the heel pad as an aid to diagnosis of acromegaly. Radiology, 82, 418-423. https://doi.org/10.1148/82.3.418

Tilbury-Davis, D. C., & Hooper, R. H. (1999). The kinetic and kinematic effects of increasing load carriage upon the lower limb. Human Movement Science, 18, 693-700. https://doi.org/10.1016/S0167-9457(99)00026-3

Verdini, F., Leo, T., Fioretti, S., Benedetti, M. G., Catani, F., & Giannini, S. (2000). Analysis of ground reaction forces by means of wavelet transform. Clinical Biomechanics, 15, 607-610. https://doi.org/10.1016/S0268-0033(00)00019-X

Voloshin, A., & Wosk, A. (1982). An In Vivo Study of Low back Pain and Shock Absorption in the Human Locomotor System. Journal of Biomechanics, 15(1), 21-27. https://doi.org/10.1016/0021-9290(82)90031-8

Voloshin, A. S., & Wosk, A. (1981). Influence of artificial shock absorbers on human gait. Clinical Orthopaedics, 160, 52-56. https://doi.org/10.1097/00003086-198110000-00006

Vrezas, I., Elsner, G., Bolm-Audorff, U., Abolmaali, N., & Seidler, A. (2010). Case-control study of knee osteoarthritis and lifestyle factors considering their interaction with physical workload. International Archives of Occupational and Environmental Health, 83(3), 291-300. https://doi.org/10.1007/s00420-009-0486-6

Wakeling, J. M., Liphardt, A. M., & Nigg, B. M. (2003). Muscle activity reduces soft-tissue resonance at heel-strike during walking. Journal of Biomechanics, 36, 1761-1769. https://doi.org/10.1016/S0021-9290(03)00216-1

Wakeling, J. M., Tscharner, V. V., Nigg, B. M., & Stergiou, P. (2001). Muscle activity in the leg is tuned is response to ground reaction forces. Journal of Applied Physiology, 91, 1307-1317.

Wang, C. L., Shau, Y. W., Hsu, T. C., Chen, H. C., & Chien, S. H. (1999). Mechanical properties of heel pads reconstructed with flaps. The Journal of Bone And Joint Surgery, 81 -B(2), 207-211. https://doi.org/10.1302/0301-620X.81B2.9056

Wearing, S. C., Urry, S. R., & Smeathers, J. E. (2000). The Effect of Visual Targeting on Ground Reaction Force and Temporospatial Parameters of Gait. Clinical Biomechanics, 15, 583-591. https://doi.org/10.1016/S0268-0033(00)00025-5

Whittle, M. W. (1997). Three-dimensional motion of the center of gravity of the body during walking. Human Movement Science, 16, 347-355. https://doi.org/10.1016/S0167-9457(96)00052-8

Whittle, M. W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait & Posture, 10, 264-275. https://doi.org/10.1016/S0966-6362(99)00041-7

Windle, C. M., Gregory, S. M., & Dixon, S. J. (1999). The shock attenuation characteristics of four different insoles when worn in a military boot during running and marching. Gait & Posture, 9, 31-37. https://doi.org/10.1016/S0966-6362(99)00002-8

How to Cite
Cámara-Tobalina, J. (2011). Effect of firefighter boots and viscoelastic insoles on the impact force of the ground reaction force’s vertical component. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 8(2). https://doi.org/10.15359/mhs.8-2.1
Scientific Articles