Desenvolvimento de tecnologia esportiva portátil na Costa Rica: integração de uma unidade de medição inercial para monitoramento de carga externa em tempo real

Autores

DOI:

https://doi.org/10.15359/mhs.20-1.1

Palavras-chave:

tecnologia portátil, avaliação física, exercício, treinamento

Resumo

A crescente tendência e projeção para o uso da tecnologia de sensores portáteis na população em geral levou ao desenvolvimento de diferentes dispositivos de medição inercial para monitorar as variáveis de atividade e de movimento durante o exercício ou esportes. O objetivo do presente estudo é sistematizar a experiência prática de desenvolvimento de um dispositivo de medição inercial, a fim de quantificar a carga externa em tempo real para os corredores. Este artigo demonstrou a capacidade instalada das instituições de ensino superior da Costa Rica para integrar os sensores existentes disponíveis no mercado internacional em um único dispositivo, com a finalidade de programá-lo e usá-lo para diferentes fins de ciência do esporte. Dois laboratórios científicos uniram forças e integraram uma equipe interdisciplinar composta por fisiologistas do exercício, cientistas do esporte, fisioterapeutas e engenheiros eletromecânicos, que, de forma global, enfrentaram o desafio de criar a IMU. Neste caso, foi desenvolvida uma IMU de grande sucesso, capaz de quantificar variáveis de carga externas controladas a partir de um dispositivo móvel em tempo real. Os resultados mostraram um nível aceitável de concordância e confiabilidade dos dados extraídos da IMU. As informações obtidas desta IMU poderiam ser utilizadas para monitorar e quantificar a carga externa, com o objetivo de implantar ou redirecionar a programação e prescrição de exercícios, bem como com o objetivo de evitar lesões por uso excessivo ou condições de sobrecarga física.

Biografia do Autor

Victor Chavarría-Fernández, Instituto Tecnológico de Costa Rica

Instituto Tecnológico de Costa Rica, Escuela de Electrónica, Laboratorio de Sistemas Electrónicos para la Sostenibilidad

Daniel Rojas-Valverde, Universidad Nacional

Universidad Nacional, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Centro de Investigación y Diagnóstico en Salud y Deporte; Clínica de Lesiones Deportivas

Randall Gutiérrez-Vargas, Universidad Nacional

Universidad Nacional, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Centro de Investigación y Diagnóstico en Salud y Deporte

Carlos Meza, Instituto Tecnológico de Costa Rica

Instituto Tecnológico de Costa Rica, Escuela de Electrónica, Laboratorio de Sistemas Electrónicos para la Sostenibilidad

Miguel Méndez-Solano, Instituto Tecnológico de Costa Rica

Instituto Tecnológico de Costa Rica, Departamento de Cultura y Deporte

Referências

Alexander, J. P., Hopkinson, T. L., Wundersitz, D. W. T., Serpell, B. G., Mara, J. K., & Ball, N. B. (2016). Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running: Journal of Strength and Conditioning Research, 30(11), 3007-3013. https://doi.org/10.1519/JSC.0000000000001396

Aroganam, G., Manivannan, N., & Harrison, D. (2019). Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors, 19(9), 1983. https://doi.org/10.3390/s19091983

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors, 18(3), 873. https://doi.org/10.3390/s18030873

Clansey, A. C., Hanlon, M., Wallace, E. S., & Lake, M. J. (2012). Effects of fatigue on running mechanics associated with tibial stress fracture risk. Medicine and Science in Sports and Exercise, 44(10), 1917-1923. https://doi.org/10.1249/MSS.0b013e318259480d

Cochrum, R. G., Connors, R. T., Coons, J. M., Fuller, D. K., Morgan, D. W., & Caputo, J. L. (2017). Comparison of Running Economy Values While Wearing No Shoes, Minimal Shoes, and Normal Running Shoes: Journal of Strength and Conditioning Research, 31(3), 595-601. https://doi.org/10.1519/JSC.0000000000000892

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). L. Erlbaum Associates.

Colby, M. J., Dawson, B., Heasman, J., Rogalski, B., & Gabbett, T. J. (2014). Accelerometer and GPS-Derived Running Loads and Injury Risk in Elite Australian Footballers: Journal of Strength and Conditioning Research, 28(8), 2244-2252. https://doi.org/10.1519/JSC.0000000000000362

Cooper, R. G. (2006). Managing Technology Development Projects. Research-Technology Management, 49(6), 23-31. https://doi.org/10.1080/08956308.2006.11657405

Gabbett, T. J. (2016). The training—injury prevention paradox: Should athletes be training smarter and harder? British Journal of Sports Medicine, 50(5), 273-280. https://doi.org/10.1136/bjsports-2015-095788

García-Pérez, J. A., Pérez-Soriano, P., Llana Belloch, S., Lucas-Cuevas, A. G., & Sánchez-Zuriaga, D. (2014). Effects of treadmill running and fatigue on impact acceleration in distance running. Sports Biomechanics, 13(3), 259-266. https://doi.org/10.1080/14763141.2014.909527

Gómez-Carmona, C. D., Pino-Ortega, J., Sánchez-Ureña, B., Ibáñez, S. J., & Rojas-Valverde, D. (2019). Accelerometry-Based External Load Indicators in Sport: Too Many Options, Same Practical Outcome? International Journal of Environmental Research and Public Health, 16(24), 5101. https://doi.org/10.3390/ijerph16245101

Gutiérrez-Vargas, R., Martín-Rodríguez, S., Sánchez-Ureña, B., Rodríguez-Montero, A., Salas-Cabrera, J., Gutiérrez-Vargas, J. C., Simunic, B., & Rojas-Valverde, D. (2018). Biochemical and Muscle Mechanical Postmarathon Changes in Hot and Humid Conditions: Journal of Strength and Conditioning Research, 1. https://doi.org/10.1519/JSC.0000000000002746

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive Statistics for Studies in Sports Medicine and Exercise Science: Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278

Kottner, J., & Streiner, D. L. (2011). The difference between reliability and agreement. Journal of Clinical Epidemiology, 64(6), 701-702. https://doi.org/10.1016/j.jclinepi.2010.12.001

Kramer, M. S., & Feinstein, A. R. (1981). Clinical biostatistics. LIV. The biostatistics of concordance. Clinical Pharmacology and Therapeutics, 29(1), 111-123. https://doi.org/10.1038/clpt.1981.18

Li, R. T., Kling, S. R., Salata, M. J., Cupp, S. A., Sheehan, J., & Voos, J. E. (2016). Wearable Performance Devices in Sports Medicine. Sports Health, 8(1), 74-78. https://doi.org/10.1177/1941738115616917

Pino-Ortega, J., Gómez-Carmona, C. D., Nakamura, F. Y., & Rojas-Valverde, D. (2020). Setting Kinematic Parameters That Explain Youth Basketball Behavior: Influence of Relative Age Effect According to Playing Position. The Journal of Strength & Conditioning Research, Publish Ahead of Print. https://doi.org/10.1519/JSC.0000000000003543

Pino-Ortega, J., Rojas-Valverde, D., Gómez-Carmona, C. D., Bastida-Castillo, A., Hernández-Belmonte, A., García-Rubio, J., Nakamura, F. Y., & Ibáñez, S. J. (2019). Impact of Contextual Factors on External Load during a Congested-Fixture Tournament in Elite U'18 Basketball Players. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01100

Quinn, T. J., & Manley, M. J. (2012). The impact of a long training run on muscle damage and running economy in runners training for a marathon. Journal of Exercise Science & Fitness, 10(2), 101-106. https://doi.org/10.1016/j.jesf.2012.10.008

Rojas-Valverde, D. (2019). Brief historical review of distance and ultradistance runnig in Costa Rica and the world. Viref:revista de Educación Física, 8(1), 1-19.

Rojas-Valverde, D., Gómez-Carmona, C. D., Fernández-Fernández, J., García-López, J., García-Tormo, V., Cabello-Manrique, D., & Pino-Ortega, J. (2020). Identification of games and sex-related activity profile in junior international badminton. International Journal of Performance Analysis in Sport, 20(3), 1-16. https://doi.org/10.1080/24748668.2020.1745045

Rojas-Valverde, D., Olcina, G., Gutiérrez-Vargas, R., & Crowe, J. (2019). Heat Strain, External Workload, and Chronic Kidney Disease in Tropical Settings: Are Endurance Athletes Exposed? Frontiers in Physiology, 10, 1403. https://doi.org/10.3389/fphys.2019.01403

Rojas-Valverde, D., Sánchez-Ureña, B., Pino-Ortega, J., Gómez-Carmona, C., Gutiérrez-Vargas, R., Timón, R., & Olcina, G. (2019). External Workload Indicators of Muscle and Kidney Mechanical Injury in Endurance Trail Running. International Journal of Environmental Research and Public Health, 16(20), 3909. https://doi.org/10.3390/ijerph16203909

Rowlands, A. V., Fraysse, F., Catt, M., Stiles, V. H., Stanley, R. M., Eston, R. G., & Olds, T. S. (2015). Comparability of Measured Acceleration from Accelerometry-Based Activity Monitors: Medicine & Science in Sports & Exercise, 47(1), 201-210. https://doi.org/10.1249/MSS.0000000000000394

Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465–485.

Seshadri, D. R., Drummond, C., Craker, J., Rowbottom, J. R., & Voos, J. E. (2017). Wearable Devices for Sports: New Integrated Technologies Allow Coaches, Physicians, and Trainers to Better Understand the Physical Demands of Athletes in Real time. IEEE Pulse, 8(1), 38-43. https://doi.org/10.1109/MPUL.2016.2627240

Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C. A., & Drummond, C. K. (2019). Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digital Medicine, 2. https://doi.org/10.1038/s41746-019-0149-2

Shorten, M., & Mientjes, M. I. V. (2011). The ‘heel impact’ force peak during running is neither ‘heel’ nor ‘impact’ and does not quantify shoe cushioning effects. Footwear Science, 3(1), 41-58. https://doi.org/10.1080/19424280.2010.542186

Sinclair, J., Taylor, P. J., & Hobbs, S. J. (2018). Kinematic regulation of time and frequency domain components of accelerations measured at the tibia during heel-toe running. Human Movement, 15(1), 51-55. https://doi.org/10.2478/humo-2014-0002

Small, K., & Relph, N. (2018). Musculoskeletal Injury Rates in Multiday Marathon Runners Performing Ten Consecutive Marathons on a Repeat Course. Journal of Athletic Enhancement, 2018. https://doi.org/10.4172/2324-9080.1000280

Staunton, C., Wundersitz, D., Gordon, B., & Kingsley, M. (2018). Accelerometry-Derived Relative Exercise Intensities in Elite Women’s Basketball. International Journal of Sports Medicine, 39(11), 822-827. https://doi.org/10.1055/a-0637-9484

Vernillo, G., Giandolini, M., Edwards, W. B., Morin, J.-B., Samozino, P., Horvais, N., & Millet, G. Y. (2017). Biomechanics and Physiology of Uphill and Downhill Running. Sports Medicine, 47(4), 615-629. https://doi.org/10.1007/s40279-016-0605-y

Zaki, R., Bulgiba, A., Ismail, R., & Ismail, N. A. (2012). Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: A systematic review. PloS One, 7(5), e37908. https://doi.org/10.1371/journal.pone.0037908

Publicado

2023-01-01

Como Citar

Chavarría-Fernández, V., Rojas-Valverde, D., Gutiérrez-Vargas, R., Meza, C., & Méndez-Solano, M. (2023). Desenvolvimento de tecnologia esportiva portátil na Costa Rica: integração de uma unidade de medição inercial para monitoramento de carga externa em tempo real. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 20(1), 1-13. https://doi.org/10.15359/mhs.20-1.1

Como Citar

Chavarría-Fernández, V., Rojas-Valverde, D., Gutiérrez-Vargas, R., Meza, C., & Méndez-Solano, M. (2023). Desenvolvimento de tecnologia esportiva portátil na Costa Rica: integração de uma unidade de medição inercial para monitoramento de carga externa em tempo real. MHSalud: Revista En Ciencias Del Movimiento Humano Y Salud, 20(1), 1-13. https://doi.org/10.15359/mhs.20-1.1

Comentarios (ver términos de uso)

Artigos mais lidos pelo mesmo(s) autor(es)